跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳暉霖
研究生(外文):Chen, Hui-Lin
論文名稱:利用包覆空氣提升奈米微粒充電器的充電效率
論文名稱(外文):Enhancement of charging efficiency of two nanoparticle chargers by using sheath air flow
指導教授:蔡春進蔡春進引用關係
指導教授(外文):Tsai, Chuen-Jinn
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:64
中文關鍵詞:奈米微粒單極微粒充電器充電效率
外文關鍵詞:nanoparticlesunipolar chargercharging efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為了提升奈米微粒在靜電集塵器內的去除效率以及增加微粒的充電效率以增進監測儀器對奈米微粒的偵測靈敏度,本研究設計了單一電極線及多電極線兩種單極微粒充電器,並在實驗室內針對不同粒徑的微粒在不同包覆氣體流量和不同電壓下,進行充電器之外在充電效率和靜電損失的測試。本研究在充電器內沿著內壁施加高速的包覆氣流以減少充電後微粒的靜電損失。在電暈電壓和電流之關係的測試結果發現,多電極線充電器的電壓之操作範圍介於+4.0~+10 kV,所對應的電暈電流範圍在+0.02~+119.63 �嫀;而單一電極線充電器的正與負電暈電流分別由+0.001~+1.817 �嫀和-0.004~-2.087 �嫀,在此範圍的操作電壓為±1.6~±2.4 kV。在不同操作條件下充電器對單徑10~50 nm氯化鈉微粒和2.5~20 nm銀微粒之充電效率和損失的試驗結果顯示,包覆氣體流速的增加可以降低微粒靜電損失並大幅提升充電器對奈米微粒的外在充電效率。
改變充電電壓可以找到ㄧ個對應到最佳外在充電效率的操作電壓,當多線電極充電器施加+9 kV的充電電壓,且在10 L/min之氣膠流量配合20 L/min之包覆氣體流量和21.26 m/s之包覆氣體流速的情況下,可得到此充電器對2.5~50 nm的微粒之最佳外在充電效率值2.86~86.3 %;而當單一電極充電器施加1 L/min之氣膠流量配合3 L/min之包覆氣體流量和5.32 m/s之包覆氣體流速的情況下,此充電器對2.5~20 nm的微粒之最佳外在充電效率則為3.07~71.1 %。在找到最佳條件後,使用串聯微分電移動度粒徑分析儀(TDMA)的方法測量奈米微粒的充電量,結果發現,粒徑小於10 nm以下之微粒最多帶一顆電荷,而50 nm之微粒則可帶五顆電荷,顯示粒徑對帶電量影響相當大。本研究的充電器可以減少靜電損失,但由於較小的微粒難以被充電而使外在充電效率無法大幅提升,將來進一步提昇10 nm以下微粒之充電效率有其必要性。
In order to enhance the charging and collection efficiency of nanoparticles in the electrostatic precipitator and to improve the sensitivity of monitoring instruments for nanoparticles, a single-wire charger and a multiple-wire charger were designed and tested for nanoparticles of different sizes at different corona voltages and sheath air flow rates in the laboratory. High-speed sheath air flow near the wall of the chargers were applied to reduce the electrostatic loss of nanoparticles to enhance the extrinsic charging efficiency. The applied voltage of the multiple-wire charger ranged from +4.0~+10 kV, corresponding to corona current from 0.02 to 119.63 �嫀, and the corona current varied from 0.001 to 1.817 �嫀 and from -0.004 to -2.087 �嫀 at operating voltage of ±1.6~±2.4 kV in the single-wire charger, respectively. Monodisperse NaCl particles of 10~50 nm and Ag particles of 2.5~10 nm in diameter were produced to test the performance of the chargers and to investigate the particle loss with different sheath flow rates, corona voltages and mean velocities of sheath air flow.
The optimal efficiency in the multiple-wire charger was obtained at +9 kV applied voltage, 10 L/min aerosol flow rate and 20 L/min sheath air flow rate, and the highest efficiency in the single-wire charger was acquired at the aerosol flow rate of 1 L/min and sheath air flow rate of 3 L/min. The extrinsic charging efficiency increased from 2.86~86.3 % in the multiple-wire charger and from 3.07~71.1 % in the single-wire charger as the particle diameter increased from 2.5 to 50 nm, and from 2.5 to 20 nm, respectively. The TDMA (tandem-differential mobility analyzer) technique was used to measure the charge distribution of charged particles. It was found that a particle carried at most one charge when the diameter is less than 10 nm, while it can carry up to 5 charges when the diameter is greater than 50 nm. This indicates the great influence of particle diameter on the electrostatic charges. The nanoparticle chargers developed in this study is able to reduce electrostatic loss of nanoparticles. However, the extrinsic charging efficiency is still low due to low intrinsic charging efficiency, which needs to be improved further.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 微粒充電理論 5
2.2 雙極微粒充電器 7
2.3 單極微粒充電器 8
第三章 研究方法 20
3.1 本研究的單極微粒充電器 20
3.2 實驗系統與儀器的使用原理 23
3.2.1 微粒產生系統 23
3.2.2 充電器測試系統 26
3.2.3 掃描式電動度粒徑分析儀 28
3.2.4 靜電集塵器(ESP) 29
3.3微粒充電效率和微粒損失計算 31
3.4 充電器出口微粒帶電量之分析方法 35
第四章 結果與討論 37
4.1 單極微粒充電器的電暈電流與操作電壓之關係 37
4.2 單極微粒充電器後端的靜電集塵器(ESP-2)之穿透率測試結果 39
4.3 單極微粒充電器之充電效率和微粒損失結果 41
4.3.1 內在充電效率(Intrinsic Charging Efficiency) 42
4.3.2 微粒靜電損失及擴散損失 46
4.3.3 外在充電效率(Extrinsic Charging Efficiency) 52
4.4充電器出口的微粒帶電分佈 59
第五章 結論與建議 61
第六章 參考文獻 63
Alguacil, F. J. and Alonso, M. (2006). Multiple charging of ultrafine particles in a corona charger. J. Aerosol Sci. 37:875-884.
Alonso, M., Martin, M. I. and Alguacil, F. J. (2006). The measurement of charging efficiencies and losses of aerosol nanoparticles in a corona charger. J. Electrost. 64:203-214.
Asbach, C. (2004). Development and evaluation of a highly efficient gas particle partitioner with minimal effect on the gas composition. Ph. D. thesis. Process and Aerosol Measurement Technology, University Duisburg-Essen, Duisburg, Germany.
Biskos, G., Reavell, K. and Collings, N. (2005). Unipolar diffusion charging of aerosol particles in the transition regime. J. Aerosol Sci. 36:247-265.
Chen, D.R., and Pui, D.Y.H. (1999). A high efficiency, high throughput unipolar aerosol charger for nanoparticles. J. Nanopart. Res. 1, 115-126.
Cheng, S. H., Ranade, M. B. and Gentry, J. W. (1997). Experimental design of high volume electrostatic charger. Aerosol Sci. Technol. 26:433-446.
Choi, Y. and Kim, S. (2007). An improved method for charging submicron and nano particles with uniform charging performance. Aerosol Sci. Technol. 41:259-265.
Forsyth, B., Liu, B. Y. H. and Romay, F. J. (1998). Particle charge distribution measurement for commonly generated laboratory aerosols. Aerosol Sci. Technol. 28:489-501.
Fuchs, N.A. (1963) Geofis. Pura Appl. 56, 185.
Hernandez-Sierra, A., Alguacil, F. J. and Alonso, M. (2003). Unipolar charging of nanometer aerosol particles in a corona ionizer. J. Aerosol Sci. 34:733-745.
Hinds, W.C. Aerosol Technology: Electrical Properties; John Wiley and Sons: New York, 1999; p330, 338.
Huang, S. H. and Chen, C. C. (2002). Ultrafine aerosol penetration through electrostatic precipitators. Environ. Sci. Technol. 36:4625-4632.
Kreyling, W. G., Semmler-Behnke, M. and Moller, W. (2006). Health implications of nanoparticles. J. Nanopart. Res. 8:543-562.
Kruis, F. E. and Fissan, H. (2001). Nanoparticle charging in a twin Hewitt charger. J. Nanopart. Res. 3:39-50.
Marquard, A., Meyer, J. and Kasper, G. (2006). Characterization of unipolar electrical aerosol chargers - Part I - A review of charger performance criteria. J. Aerosol Sci. 37:1052-1068.
Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113:823-839.
Park, D., An, M. and Hwang, J. (2007). Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. J. Aerosol Sci. 38:420-430.
Qi, C., Chen, D. R. and Greenberg, P. (2008). Performance study of a unipolar aerosol mini-charger for a personal nanoparticle sizer. J. Aerosol Sci. 39:450-459.
Qi, C., Chen, D. R. and Pui, D. Y. H. (2007). Experimental study of a new corona-based unipolar aerosol charger. J. Aerosol Sci. 38:775-792.
Reischl, G. P., Makela, J. M., Karch, R. and Necid, J. (1996). Bipolar charging of ultrafine particles in the size range below 10 nm. J. Aerosol Sci. 27:931-949.
Romay, F. J. (1992). Ph. D. thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.
Scheibel, H. G. and Porstendorfer, J. (1983). Generation of Monodisperse Ag-Aerosol and Nacl-Aerosol with Particle Diameters between 2-Nm and 300-Nm. J. Aerosol Sci. 14:113-126.
TSI, 2006. Series 3080 Electrostatic Classifier Operation and Service Manual.
Unger, L., Boulaud, D. and Borra, J. P. (2004). Unipolar field charging of particles by electrical discharge: effect of particle shape. J. Aerosol Sci. 35:965-979.
Wang, S. C. and Flagan, R. C. (1990). Scanning Electrical Mobility Spectrometer. Aerosol Sci. Technol. 13:230-240.
Yoo, K. H., Lee, J. S. and Oh, M. D. (1997). Charging and collection of submicron particles in two-stage parallel-plate electrostatic precipitators. Aerosol Sci. Technol. 27:308-323.
陳孝綸 (2007),ㄧ個奈米微粒充電器的研發,國立交通大學環境工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top