跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳晟輝
研究生(外文):Wu, Cheng-Hui
論文名稱:快速的移動陰影移除演算法與其在交通流量偵測上的應用
論文名稱(外文):An Efficient Moving Shadow Removal Algorithm and Its Application of Traffic Flow Detection
指導教授:林進燈林進燈引用關係
指導教授(外文):Lin, Chin-Teng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:65
中文關鍵詞:陰影移除
外文關鍵詞:Shadow Removal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
近年來,越來越多智慧型影像監視系統被應用在提升人們的安全與生活品質,在大多數的這類系統中,前景物體擷取(Foreground object extraction)是一個非常重要而且基本的步驟,因為許多後續的處理與應用都是建立在前景物體上。然而移動陰影(Moving shadow)卻是影響前景物體擷取的一個關鍵因素。在戶外的環境下,光線被前景物體遮擋的時候便會產生陰影,而這些陰影常常會被錯誤地分類成前景區域,這樣的錯誤接著就會引起許多問題,像是物體定位會因為中心點偏移而出錯,而物體的外型邊線會變形。此外,如果兩個獨立的物體因為陰影而相連在一起,就可能會被判斷成只有一個前景物體。這些問題都會影響後續在追蹤、分類與辨識上的效能。
此外,許多的影像監控系統會偏好使用黑白攝影機,尤其是使用在戶外環境之下的系統。因為黑白攝影機會比彩色攝影機有較高的解析度,而且在低照度的情況下也會有較佳的影像品質。因此我們提出一個不需要使用彩色資訊的陰影移除演算法。藉由使用物體的邊線特徵(Edge feature),並且保持陰影區域內部的同質性(Homogeneous property),然後我們將物體邊線最外圍的部份去除掉,接著便可以得到非陰影的線條特徵。另外,我們也使用灰階的資訊建立出”變暗比率”(Darkening factor)的高斯模型,然後藉由這些模型來找出其他非陰影的特徵。接著合併這兩種非陰影的特徵,我們便可以去除陰影的影響且正確地框出前景物體的區域。
最後在車輛流量偵測的實驗當中,從三個測試影片所得到的數據裡可以看出我們的演算法可以提升整體4%~10%的正確率。此外,本論文所提出的移動陰影移除演算法在處理速度上平均每幀畫面只需要13.84毫秒,是相當有效率的。
In recent years, utilizing video processing to help for improving safety or human’s life has attracted great attention. Most of these application systems, foreground object extraction is a very fundamental step before further processing. However moving shadow is a critical influencing factor when extracting foreground object. In outdoor scene, moving shadow occurs when the light is blocked by moving object, and the shadow region is usually misclassified as foreground region. It would bring out a lot of problems. For example, shadow region may cause object localization problem, and shape deformation. Besides, if shadow region connects these objects, two or more independent objects would be treated as only one foreground object. All of these problems will degrade the performance of subsequent processing, like tracking, classification or recognition.
In addition, some application systems prefer B/W (Black & White) camera rather than color camera especially in outdoor, because B/W camera have better resolution than color camera, and the sensing quality under low illumination condition is also better than color camera. Therefore, we propose a moving shadow removal algorithm without utilizing color information. We use the edge feature of object and keep the homogeneous property inside shadow region as much as possible. By eliminating the boundary edge of object, we can obtain the non-shadow edge feature. Additionally, we also utilize gray level information. We build a Gaussian darkening factor model for each gray level, and use these models to extract non-shadow feature. By integrating these two features, we can successfully detect the objects without including their shadow region.
Finally, we take an experiment on vehicle counting. In our three test videos, the counting result can improve accuracy rate 4%~10% after using our shadow removal algorithm. The moving shadow removal algorithm proposed in this thesis has been successfully evaluated that the processing average time is 13.84 milliseconds per frame, and it is quite efficient.
CHINESE ABSTRACT II
ENGLISH ABSTRACT IV
CHINESE ACKNOWLEDGEMENTS V
CONTENTS VII
LIST OF TABLES IX
LIST OF FIGURES X
CHAPTER 1 INTRODUCTION 1
1.1. MOTIVATION 1
1.2. OBJECTIVE 2
1.3. THESIS ORGANIZATION 3
CHAPTER 2 RELATED WORKS 4
CHAPTER 3 MOVING SHADOW REMOVAL ALGORITHM 8
3.1. MOVING OBJECT EXTRACTION 9
3.1.1. Gaussian Mixture Model for Background Construction 10
3.1.2. Morphological operation 13
3.1.3. Connected Component Labeling 14
3.2. EDGE-BASED SHADOW REMOVAL FOREGROUND PIXEL EXTRACTION 15
3.2.1. Edge Extraction 16
3.2.2. Adaptive Binarization method 20
3.2.3. Boundary Elimination 22
3.3. GRAY LEVEL-BASED SHADOW REMOVAL FOREGROUND PIXEL EXTRACTION 29
3.3.1. Constant ratio 30
3.3.2. Gaussian Darkening Factor Model Updating 30
3.3.3. Non-shadow Pixel Determination Task 33
3.4. FEATURE COMBINATION 35
3.4.1. Integration by OR Operation 35
3.4.2. Labeling & Grouping and Size Filter 36
3.5. TRACKING PROCESS 38
3.5.1. Overlap region Analysis 40
3.5.2. Matching Process and Tracking Table Updating 41
CHAPTER 4 EXPERIMENTAL RESULTS 44
4.1. EXPERIMENTAL RESULTS OF SHADOW REMOVAL 44
4.1.1. Experimental Results of Different Scenes 44
4.1.2. Occlusion caused by shadow 48
4.1.3. Discussions of Gray level-based Method 50
4.2. VEHICLE COUNTING 51
4.3. EXECUTION TIME DISCUSSION 55
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 56
REFERENCE 58
APPENDIX 61
[1].Wei Z.; Xiang Zhong F.; Yang, X.K.; Wu, Q.M.J., "Moving Cast Shadows Detection Using Ratio Edge," IEEE Transactions on Multimedia, vol.9, no.6, pp.1202-1214, Oct. 2007.
[2].Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A., "Detecting moving objects, ghosts, and shadows in video streams," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, no.10, pp. 1337-1342, Oct. 2003.
[3].Yang, M.-T.; Lo, K.-H.; Chiang, C.-C.; Tai, W.-K., "Moving cast shadow detection by exploiting multiple cues," Image Processing, IET , vol.2, no.2, pp.95-104, April 2008.
[4].Cavallaro, A.; Salvador, E.; Ebrahimi, T., "Shadow-aware object-based video processing," Vision, Image and Signal Processing, IEE Proceedings - , vol.152, no.4, pp. 398-406, 5 Aug. 2005.
[5].Kai-Tai S.; Jen-Chao T., "Image-Based Traffic Monitoring With Shadow Suppression," Proceedings of the IEEE , vol.95, no.2, pp.413-426, Feb. 2007.
[6].Martel-Brisson, N.; Zaccarin, A., "Learning and Removing Cast Shadows through a Multidistribution Approach," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, no.7, pp.1133-1146, July 2007.
[7].Joshi, A.J.; Papanikolopoulos, N.P., "Learning to Detect Moving Shadows in Dynamic Environments," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, no.11, pp.2055-2063, Nov. 2008.
[8].Joshi, A.J.; Papanikolopoulos, N.P., "Learning of moving cast shadows for dynamic environments," IEEE International Conference on Robotics and Automation, 2008. (ICRA 2008), pp.987-992, 19-23 May 2008.
[9].Leone, A.; Distante, C.; Buccolieri, F., "A texture-based approach for shadow detection," IEEE Conference on Advanced Video and Signal Based Surveillance, 2005. (AVSS 2005), pp. 371-376, 15-16 Sept. 2005.
[10].Mohammed Ibrahim M; Anupama R., “Scene Adaptive Shadow Detection Algorithm”, Proceedings Of World Academy Of Science, Engineering and Technology, vol. 2, pp. 1307-6884, Jan. 2005.
[11].Benedek, C.; Sziranyi, T., "Bayesian Foreground and Shadow Detection in Uncertain Frame Rate Surveillance Videos," IEEE Transactions on Image Processing, vol.17, no.4, pp.608-621, April 2008.
[12].Mei X.; Chong-Zhao H.; Lei Z., “Moving Shadow Detection and Removal for Traffic Sequences”, International Journal of Automation and Computing, pp. 38-46, Jan. 2007.
[13].Jun-Wei H.; Shih-Hao Y.; Yung-Sheng C.; Wen-Fong H., "Automatic traffic surveillance system for vehicle tracking and classification," IEEE Transactions on Intelligent Transportation Systems, vol.7, no.2, pp. 175-187, June 2006.
[14].Stauffer, C.; Grimson, W.E.L., "Adaptive background mixture models for real-time tracking," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999., vol.2, no., pp.-252 Vol. 2, 1999.
[15].Peng S.; Yanjiang W., “An improved adaptive background modeling algorithm based on Gaussian Mixture Model”, Signal Processing, 2008. ICSP 2008. 9th International Conference, pp. 1436-1439, 26-29 Oct. 2008.
[16].N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man and Cybernetics, vol.9, no.1, pp.62-66, Jan. 1979.
[17].Sauvola J; Pietikainen M, "Adaptive document image binarization", Pattern Recognition, Vol 33, Issue 2, pp. 225-236, Feb. 2000.
[18]. Faisal S.; Daniel K.; Thomas M. B., "Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images", SPIE Document Recognition and Retrieval XV, DRR’08, San Jose, CA, USA. Jan. 2008.
[19].P.L. Rosin; T. Ellis, "Image difference threshold strategies and shadow detection", Proceedings of the sixth British Machine Vision Conference, 1994.
[20].Yang W.; Kia-Fock L.; Jian-Kang W., "A dynamic conditional random field model for foreground and shadow segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, no.2, pp.279-289, Feb. 2006.
[21].Mikic, I.; Cosman, P.C.; Kogut, G.T.; Trivedi, M.M., "Moving shadow and object detection in traffic scenes," Proceedings of 15th International Conference on Pattern Recognition, 2000., vol.1, no., pp.321-324 vol.1, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top