跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林怡先
研究生(外文):Lin, Yi-Shian
論文名稱:奈米矽薄膜之製程與特性分析
論文名稱(外文):Fabrication and characterization of Si nanocrystals thin films
指導教授:李柏璁李柏璁引用關係
指導教授(外文):Lee, Po-Tsung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:75
中文關鍵詞:奈米矽晶格爐管快速熱退火拉曼光激發光富立葉紅外線光譜儀
外文關鍵詞:Si nanocrystalsFurnaceRTARamanPLFTIR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文當中,我們首先透過磁控濺鍍機來成長SRO/SiO2的多層薄膜結構,後續再經高溫加熱製程來析出矽奈米結晶。透過紅外線光譜儀我們驗證矽奈米結晶的相轉變過程是透過高溫加熱回火所造成,其次是針對不同加熱製程(快速熱回火、爐管以及快速熱退火和爐管)下多層SRO/SiO2結構分析光激發光與拉曼光譜並加以探討不同加熱製程對於矽奈米結晶狀態的差異,此一結果透露加熱製程若經由快速熱退火接爐管回火會有較佳的結晶效果與結晶體積比例。我們也透過光激發光與拉曼光譜來觀察不同尺寸下SRO/SiO2多層結構中的矽奈米結晶尺寸。

為了研究SRO/SiO2多層結構的光伏特效應,我們首先針對元件的電性做量測與分析,緊接著再透過照光去觀察不同尺寸下SRO/SiO2多層結構的光伏特特性。
In this thesis, SRO (silicon rich oxide)/SiO2 multilayer structure was first grown by magnetron sputtering, and then, Si NCs precipitated through high temperature annealing process. By using Fourier transform infrared spectroscopy (FTIR), we identify the formation of Si NCs due to phase separation after high temperature annealing processes. We also focus on the SRO/SiO2 structure on different thermal conditions (RTA (Rapid thermal annealing), Furnace and RTA with Furnace), from thermal condition dependence of photoluminescence (PL) and Raman spectra, RTA with furnace annealing might have a better volume fraction of crystallinity. We also analyze the size dependence of PL and Raman spectra to identify the size of Si nanocrystals.
To study the photovoltaic effect, we first focus on the electrical property of SRO/SiO2 structure, and then we measure the photovoltaic property of SRO/SiO2 structure under illumination.
Content

Abstract (in Chinese) I
Abstract (in English) II
Acknowledgements III
Content IV
List of Tables VI
List of Figures VII

Chapter 1 Introduction 1

1-1 Energy and Photovoltaics 1
1-1.1 Brief Talk About the Energy Crisis and Renewable Energy 1
1-1.2 Comparisons Between Three Generation Photovoltaics 3
1-2 Third Generation Photovoltaics 7
1-2.1 Efficiency Losses of Standard Cells 7
1-2.2 Third Generation Photovoltaics: Tandem Cells 8
1-3 Motivation and overview of our thesis 10

Chapter 2 Principle and Fabrication of Si NCs thin films 13

2-1 Quantum Confinement Effect: Si Nanocrystals (Si NCs) 13
2-2 RF Magnetron Co-Sputtering and Multilayer Fabrication 16
2-2.1 Pre-Procedure of Our Substrates 16
2-2.2 Operation Principle of RF Magnetron Co-Sputtering 17
2-2.3 Multilayer (SRO/SiO2) Structure Fabrication 18
2-3 Formation of Si NCs 20
2-3.1 Thermal Annealing Process: Rapid Thermal Anneal (RTA) and Furnace 20
2-3.2 Formation of Si NCs: Phase Separation of SRO Film 22

Chapter 3 Characterization of Si NCs thin films 24

3-1 Introduction 24
3-2 Analysis of SRO single layer by Fourier Transform Infrared Spectroscopy 25
3-2.1 Fundamental of Infrared Absorption Spectroscopy 25
3-2.2 Experimental Results and Discussions 28
3-3 Analysis of Multilayer (SRO/SiO2) by Micro-Raman Spectroscopy 32
3-3.1 Fundamental of Micro-Raman Spectroscopy 32
3-3.2 Experimental Results and Discussions 38
3-4 Analysis of Multilayer (SRO/SiO2) by PL Spectroscopy 44
3-4.1 Fundamental of PL Spectroscopy 44
3-4.2 Experimental Results and Discussions 50
3-5 Summaries 63

Chapter 4 Electrical Property 64

4-1 Electrical Properties of multilayer structures 64
4-2 Summaries 69

Chapter 5 Conclusions and future work 70

5-1 Conclusions 70
5-2 Future work 71

Reference 72
Reference

[1]. J. Zhao, A. Wang, M.A. Green, F. Ferrazza, “19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991 (1998).
[2]. M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Solar Energy, 74, 181 (2003).
[3]. M. A. Green, “Third Generation Photovoltaics: Ultra-high Conversion Efficiency at Low Cost” Progress In Photovoltaics: Research and Applications 9:123-135 (2001).
[4]. Gavin Conibeer , Martin Green, Eun-Chel Cho, Dirk König, Young-Hyun Cho, “Silicon quantum dot nanostructures for tandem photovoltaic cells” Thin Solid Films
(2008).
[5]. M.A. Green “Third Generation Photovoltaics" Advanced Solar Energy Conversion, Springer (2006)
[6]. A. Marti, G.L. Araujo, Sol. Energy Mater. Sol. Cells 43, 203 (1996)
[7]. M. A. Green, E-C. Cho, Y. Cho, Y. Huang, E. Pink, T. Trupke, A. Lin, T.
Fangsuwannarak, T. Puzzer, G. Conibeer, and R. Corkish, “All-silicon tandem cells
based on “Artificial” semiconductor synthesised using silicon quantum dots in
dielectric matrix,” The 20th European Photovoltaic Solar Energy Conference and
Exhibition, Dresden (2006).
[8]. G. Scardera, T. Puzzer, D. McGrouther, E. Pink, T. Fangsuwannarak, G. Conibeer, and M. A. Green, “ Investigating Large Area Fabrication if Silicon Quantum dots in a Nitride Matrix for Photovoltaic Applications” , IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 122 ,(2006).
[9]. Green, M.A., Cho, E.-C., Cho, Y., Huang, Y., Pink, E., Trupke, T., Lin, A., “All-Silicon Tandem Cells Based On “Artificial” Semiconductor Synthesized Using Silicon Quantum Dots In a Dielectric Matrix ” 20th European Photovoltaic Solar Energy Conference, 6 – 10 (2005)
[10]. Y.M. Niquet, C. Delerue, G. Allan and M. Lannoo, Phys. Rev. B62, 5109
(2000).
[11]. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, Appl. Phys. Lett. 80, 661 (2002).
[12]. J.U. Schmidt 1,*, B. Schmidt “Investigation of Si nanoclusters formation in
sputter-deposited silicon sub-oxides for nanoclusters memory structures“ Materials Science and Engineering (2003).
[13]. Thipwan Fangsuwannarak,” Electronic and Optical Characterisations of Silicon Quantum Dots and its Applications in Solar Cells ” April (2007)
[14]. Z. Yu, M. A. Mijares, E. Quiroga, R. L. Estopier, J. Carrillo, and C. Falcony,
“Structural and optical properties of Si/SiO2 superlattices prepared by low pressure
chemical vapor deposition,” J. Appl. Phys. 100, 013524 (2006).
[15]. Jiwang Yan, Tooru Asami, Tsunemoto Kuriyagawa” Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy”, Precision Engineering 32 186–195 (2008).
[16]. C. V. Raman, and K. S. Krishna , “ A new type of secondary radiation,” Nature
121, 501 (1928).
[17]. Zwick A, Carles R. Multiple-order Raman scattering in crystalline and amorphous silicon. Phys Rev B 1993;48(9):6024–32.
[18]. R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka , “Critical
volume fraction of crystallinity for conductivity percolation in phosphorus-doped
Si:F:H alloys,” Appl. Phys. Lett. 40, 534 (1982).
[19]. Shihua Huang, Hong Xiao, Sha Shou” Annealing temperature dependence of Raman scattering in Si/SiO2 superlattice prepared by magnetron sputtering” Applied Surface Science, 255, (2009), 4547-4550.
[20]. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)
[21]. Jian Zi, Kaiming Zhang, Xide Xie, Phys. Rev. B 55, 9263(1997)
[22]. G. Faraci1,a, S. Gibilisco1, P. Russo1, A.R. Pennisi1, G. Compagnini2, S. Battiato2, R. Puglisi3, and S. La Rosa “Si/SiO2 core shell clusters probed by Raman spectroscopy” Eur. Phys. J. B 46, 457–461 (2005).
[23]. Tae-Youb Kim, Nae-Man Park, Kyung-Hyun Kim, and Gun Yong Sung, ” Quantum confinement effect of Si NCs in situ grown in silicon nitride films”, Appl. Phys. Lett. 85, 22, (2004)
[24]. N.-M. Park, C.-J. Choi, T. Y. Seong, and S.-J. Park, Phys. Rev. Lett. 86, 1355 (2001).
[25]. Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible
PL from oxidized Si nanometer-sized spheres: Exciton confinement
on a spherical shell ,” Phys. Rev. B 48 4883 (1993)
[26]. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, and Y.-H. Xie, “Size,
shape, and composition of luminescent species in oxidized Si nanocrystals and
H-passivated porous Si,” Phys. Rev. B 52, 4910 (1995).
[27]. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic
states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys.
Rev. Lett. 82, 197 (1999).
[28]. J. S. Biteen, N. S. Lewis, H. A. Atwater, and A. Polman, “Size-dependent
oxygen-related electronic states in silicon nanocrystals ,” Appl. Phys. Lett. 84,
5389 (2004).
[29].X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dongt, and W. D. Song, “Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition,”J. Appl. Phys. 97, 014913 (2005).
[30]. H. Hofmeister and P. Ködderitzsch, “Nanosized silicon particles by inert gas arc
evaporation,” Nanostructured Materials 12, 203, (1999).
[31]. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V.
Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their
size,” Phys. Rev. B 62, 15942 (2000).
[32]. D. Kovalev, H. Heckler, B. Averboukh, and F. Koch, “Breakdown of the
k-conservation rule in Si nanocrystals,” Phys. Rev. B 57,3741 (1998).
[33]. N. Daldosso, M. Luppi, S. Ossicini, E. Degoli, R. Magri, G. Dalba, P. Fornasini,
R. Grisenti, F. Rocca, L. Pavesi, S. Boninelli, F. Priolo, C. Spinella, and F. Iacona,
“Role of the interface region on the optoelectronic properties of silicon nanocrystals
embedded in SiO2,” Phys. Rev. B 68, 085327 (2003).
[34]. M. A. Green, Silicon Solar Cells: Advanced Principles &Practice, Center for
Photovoltaic Devices and Systems, University of New South Wales, 1995.
[35]. A. G. Aberle, Crystalline Silicon Solar cells: Advanced Surface Passivation and
Analysis, Center for Photovoltaic Devices and Systems, University of New South
Wales, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊