跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許惠晴
研究生(外文):Hui-Ching Hsu
論文名稱:考量報廢機率之消耗性部品存貨之最佳補貨策略
論文名稱(外文):Determining Optimal Order Quantity per Procurement Cycle with a Given Length for a Consumption Part subject to Obsolescence Phenomenon
指導教授:沈國基沈國基引用關係
指導教授(外文):Gwo-Ji Sheen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:54
中文關鍵詞:報廢性存貨問題socket pinWeibull分配nonhomogeneous Poission process最佳訂購量
外文關鍵詞:obsolescent inventory problemsocket pinWeibu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技及市場的快速變遷,存貨之報廢問題儼然成為一重要問題,為了順應當今生命週期率退、工程變更快速之環境,已有許多學者針對報廢性存貨問題提出相關之研究。而本研究以個案公司之消耗性零件-socket pin為例,提出考量報廢機率求解最佳補貨策略之演算法。其報廢機率受IC之phase out及socket pin之工程變更兩個報廢因子影響,本研究假設以上報廢因子為兩獨立受時間影響之Weibull分配,進一步結合以上因子,進一步,以nonhomogeneous Poisson process之公式求得一時間區間之報廢機率。本研究之訂購策略演算法必須考量固定的需求、相關之成本及收益,並求其最佳訂購量使其利潤最大。最後再針對此報廢率、利潤函數之最佳訂購量及最大利潤進行數值分析與敏感度分析。
Obsolescent inventory is a critical concern in some industries, especially in the environment where the rapid change of technology and market. In spite of the significance of the increasing speed of technological change, there are now few prescriptive studies of the control of obsolescent inventory. The aim of this study is develop a joint rate function of socket pin obsolescence and propose a model to determine the order quantity at any time point to maximize the total profit per procurement cycle with a given length. Consider the case in this research, the obsolescent probability of consumption part-socket pin is effect by two conditions. One is phase out of IC, the other is engineering change of socket pin. We assume the two conditions follow Weibull distribution. Then, joint above two independent distribution to be obsolescent hazard rate. Use nonhomogeneous Poisson process formulation to obtain the interval probability of obsolescence. Furthermore, propose a decision algorithm that solves optimally the procurement policy problem taking into obsolescence problem. The ordering strategy should take into the constant expected demand during the life cycle, relevant costs and revenue. to maximize the profit. Final, we do sensitivity analysis and numerical analysis with the particular parameters finally.
中文摘要.................................................................................................................... i
Abstract ..................................................................................................................... ii
Contents ................................................................................................................... iii
Chapter 1 Introduction and Background ................................................................. 1
1.1 Research background and motivation ........................................................... 1
1.2 Problem description ..................................................................................... 3
1.3 Research objective ....................................................................................... 4
1.4 Research methodology and framework ......................................................... 4
1.4.1 Research methodology....................................................................... 4
1.4.2 Research framework .......................................................................... 5
Chapter 2 Literature review .................................................................................... 7
2.1 Approach to the obsolescent inventory problem ........................................... 7
2.2 Obsolescent risk probability ......................................................................... 8
2.3 Reliability and Weibull Distribution ............................................................. 9
2.4 Nonhomogeneous Poisson Process ............................................................. 12
Chapter 3 The Model ............................................................................................ 15
3.1 Scenario setting .......................................................................................... 15
3.2 Model assumptions and notation ................................................................ 16
3.3 The obsolescent probability function of socket pin ..................................... 19
3.4 Mathematical formulation .......................................................................... 26
Chapter 4 Analysis ............................................................................................... 31
4.1 Sensitivity Analysis .................................................................................... 31
4.1.1 Sensitivity Analysis of hazard rate ................................................... 31
4.1.2 Sensitivity Analysis of
and
.................................................. 33
4.2 Numerical examples ................................................................................... 37
4.3 Numerical study ......................................................................................... 38
4.3.1 Numerical study of hazard rate ........................................................ 38
4.3.2 Numerical study of
and
....................................................... 43
Chapter 5 Summary and future research ............................................................... 51
5.1 Summary ................................................................................................... 51
5.2 Future research ........................................................................................... 52
Reference ................................................................................................................ 53
Arcelus FJ, Pakkala TPM, and Srinivasan G. A myopic policy for the gradual obsolescence problem with price-dependent demand. Computers & Operations Research 2002; 29:1115-1127.
Barlow RE, Proschan F. Mathematical Theory of Reliability. New York: John Wiley & Sons 1965.
Block HW, Borges WS, Savits TH. Age-dependent minimal repair. Journal of Applied Probability 1985; 22: 370-385.
Brown GW, Lu JY, Wolfson RJ. Dynamic modeling of inventories subject to obsolescence. Management Science 1964; 11: 51-63.
Cobbaert K, Van D. Inventory models for fast moving spare parts subject to ‘‘sudden death’’ obsolescence. International Journal of Production Economic 1996; 44: 239-248.
David I, Mehrez A. An inventory model with exogenous failures. Operations Research 1995; 43: 902-903.
David I, Greenshtein E, Mehrez A. A dynamic-programming approach to continuous review obsolescent inventory problems. Naval Research Logistics 1997; 44: 757-774.
Gavrilov LA, Gavrilova NS. The reliability theory of aging and longevity. Journal of Theoretical Biology 2001b; 213: 527-545.
Groenevelt H, Seidman A, Pintelon L. Production batching with machine breakdowns and safety stocks. Operations Research 1993;40: 959-971.
Hadley G, Whitin TM. A family of dynamic inventory models. Management Science 1962; 8: 458-469.
Joglekar P, Lee P. An exact formulation of inventory costs and optimal lot size in face of sudden obsolescence. Operations Research Letters 1993; 14: 283-290.
Katok E, Lathrop A, Tarantino W, Xu SH. Jeppesen uses a dynamic programming-based DSS to manage inventory. Interfaces 2001; 31: 54-65.
Kennedy WJ, Patterson JW, Fredendall LD. An overview of recent literature on spare parts inventories. International Journal of Production Economics 2002; 76(2): 201-215.
Kuo L, Yang TY. Bayesian computation for nonhomogeneous Poisson process in software reliability. Journal of the American Statistical Association 1996; 91:763–773.
Masters JM. A note on the effect of sudden obsolescence on the optimal lot size. Decision Sciences 1991; 22:1180-1186.
Meeker WQ, Escobar LA. Statistical Methods for Reliability Data. John Wiley and Sons, New York, NY 1998.
Nahmias S. On ordering perishable in inventory when both demand and lifetime are random. Management Science 1977; 24(1):82-90.
Rosenfeld, Donald B. Disposal of excess inventory, Operations Research 1989; 37(3):404-409.
Rosin P, Rammler E. The laws governing the fineness of powdered coal, Journal of the Institute of Fuel. 1933; 31:29-36.
Ross, S. Introduction to probability models. Academic Press. 2007
Song Y, Lau HC. A periodic review inventory model with application to continuous review obsolescence problem. European Journal of Operational Research 2004; 15:110-120.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top