跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭秋男
研究生(外文):Ciou-Nan Siao
論文名稱:以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
論文名稱(外文):In situ Measurement of Stress Evolution in Tin Strip under Electromigration by Synchrotron X-ray Diffraction
指導教授:吳子嘉
指導教授(外文):Albert T. Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:48
中文關鍵詞:電遷移應力同步輻射
外文關鍵詞:electromigrationsynchrotronstress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用同步輻射X光說明錫導線在電遷移效應下的臨場應力分佈,藉由高強度的X光可準確地測量微小的應力變化。可直接地測量電遷移效應所造成的背向應力,也可估算不同電流密度下的有效擴散係數。觀察焦耳熱效應且計算焦耳熱所造成的溫度增加量。考慮表面上的堅硬氧化層對應力分佈及變化的嚴重影響。觀察電遷移效應後的試片表面微結構變化。
在100°C、電流密度為1×103 A/cm2下,電遷移效應所造成的應力梯度約為5.5 MPa/cm;電流密度為5×103 A/cm2下,電遷移效應所造成的應力梯度約為16.5 MPa/cm。在5×103 A/cm2下,焦耳熱效應所造成的溫度增高約15°C。在100°C、電流密度為1×103 A/cm2和5×103 A/cm2下,估算錫的有效擴散係數分別為7.16×10-14 m2/s和6.01×10-14 m2/s。在長期的電遷移下,陰極端有孔洞生成,陽極端有凸塊產生。
This investigation elucidates stress evolution in situ in tin strips under electromigration using synchrotron radiation X-ray. Minute variations in stress are measured precisely using intense X-rays. Back stress that is induced by electromigration was directly measured. The effective diffusivities at various current densities were calculated. The effect of Joule heating was observed and the increase in temperature was calculated. The protective oxide layer on the surfaces is considered to influence critically the kinetics of stress evolution. The morphology of tin strips after electromigration was observed.
Electromigration induced stress gradients are about 5.5 MPa/cm with current density of 1×103 A/cm2 and 16.5 MPa/cm with current density of 5×103 A/cm2 at 100°C. The evaluate increases in temperature by Joule heating is approximately 15°C. The diffusivity of Sn with current density of 1×103 and 5×103 A/cm2 at 100°C has been calculated to be 6.01×10-14 and 6.01×10-14 m2/s. Voids form at the cathode and hillocks form at the anode in the prolonged test of electroigration.
摘要................................................................................................................................I
Abstract ........................................................................................................................ II
目錄.............................................................................................................................. III
圖目錄........................................................................................................................... V
表目錄........................................................................................................................ VII
第一章 序論 ................................................................................................................. 1
1.1 研究背景..................................................................................................... 1
1.2 研究動機..................................................................................................... 3
第二章 文獻回顧 ......................................................................................................... 5
2.1 電遷移理論................................................................................................. 5
2.1.1 電遷移的驅動力 ............................................................................... 5
2.1.2 電遷移的臨界電流和臨界長度 ....................................................... 7
2.1.3 電遷移的背向應力 ........................................................................... 9
2.2 電遷移導線應力的量測........................................................................... 12
2.2.1 鋁導線的應力量測 ......................................................................... 12
2.2.2 鋁(銅)導線的應力量測................................................................... 13
2.3 同步輻射簡介........................................................................................... 15
第三章 實驗方法 ....................................................................................................... 16
3.1 試片製作................................................................................................... 16
3.1.1 絕熱層的生長 ................................................................................. 16
3.1.2 微影蝕刻 ......................................................................................... 16
3.1.3 薄膜鍍製 ......................................................................................... 17
3.1.4 電鍍錫 ............................................................................................. 17
3.2 試片處理................................................................................................... 19
3.2.1 退火(Annealing) .............................................................................. 19
3.2.2 拋光 ................................................................................................. 19
3.3 電遷移實驗............................................................................................... 20
3.4 試片分析................................................................................................... 21
3.4.1 光學顯微鏡 ..................................................................................... 21
3.4.2 電子顯微鏡 ..................................................................................... 21
3.4.3 電子背向散射繞射 ......................................................................... 22
3.4.4 八環X光繞射儀 ............................................................................ 22
第四章 結果與討論 ................................................................................................... 23
4.1 電鍍錫的優選方向................................................................................... 23
4.2 初期的電遷移效應................................................................................... 25
4.2.1 微結構的變化 ................................................................................. 25
4.2.2 應力的分析與測量 ......................................................................... 27
4.2.3 焦耳熱效應 ..................................................................................... 32
4.2.4 擴散係數 ......................................................................................... 33
4.3 長時間的電遷移效應............................................................................... 38
4.3.1 微結構的變化 ................................................................................. 38
4.4 正逆方向通電的電遷移效應................................................................... 42
第五章 結論 ............................................................................................................... 46
參考文獻...................................................................................................................... 47
1. Cover of the July 1995 issue of IBM J. Res. Dev.
2. H. B. Huntington and A. R. Grone, J. Phys. Chem. Solid 20, 76 (1961).
3. J. R. Black, IEEE Trans Electron Device, ED-16, 348 (1969).
4. J. R. Black, Proc. IEEE, 57, 1587 (1969).
5. J. A. Blech and E. S. Meieran, J. Appl. Phys., 40, 485 (1969).
6. K. L. Lee, C. K. Hu and K. N. Tu, J. Appl. Phys., 78, 4428 (1995).
7. J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, J. Appl. Phys., 94, 7560 (2003).
8. W. J. Choi, E. C. C. Yeh and K. N. Tu, J. Appl. Phys., 94, 5665 (2003).
9. K. N. Tu, J. Appl. Phys., 94, 5451 (2003).
10. P. C. Wang, G. S. Cargill III, I. C. Noyan and C. K. Hu, Appl. Phys. Lett., 72,
1296 (1998).
11. P. C. Wang, I. C. Noyan, S. K. Kaldor, J. L. Jordan-Sweet, E. G. Liniger and C.
K.Hu, Appl. Phys. Lett., 76, 3726 (2000).
12. H. K. Kao, G. S. Cargill III and C. K. Hu. J. Appl. Phys., 89, 2588 (2003).
13. H. K. Kao, G. S. Cargill III, F. Giuliani, and C. K. Hu. J. Appl. Phys., 93, 2516
(2003).
14. A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, Appl.
Phys. Lett., 85, 2490 (2004).
15. A. T. Wu, A. M. Gusak, and K.N. Tu, and C. R. Kao, Appl. Phys. Lett., 86,
241902 (2005).
16. A. T. Wu and Y. C. Hsieh, Appl. Phys. Lett., 92, 121921 (2008)
17. V. B. Fiks, Sov. Phys., Solid state, 1, 14 (1959).
18. K. N. Tu, J. W. Mayer and L. C. Feldman, Pearson Education POD, 355 (1996).
19. C. Bosvieux and J. Friedel, J. Phys. Chem. Solid, 23, 123 (1962).
20. R. S. Sorbrllo, Phys. Rev. B, 31, 798 (1985).
21. R. Landauer and J. W. F. Woo, Phys. Rev. B, 10, 1266 (1974).
22. I. A. Blech, J. Appl. Phys., 47, 1203 (1976).
23. I. A. Blech and C. Herring, Appl. Phys. Lett., 29, 131 (1976)
24. C. Herring, J. Appl. Phys., 21, 437 (1950).
25. M. A. Korhonen, P. Borgesen, K. N. Tu and C. Y. Li, J. Appl. Phys., 73, 3790
(1993).
26. J. J. Clement and C. V. Thompson, J. Appl. Phys., 78, 900 (1995).
27. D. D. Brown, J. E. Sanchez, Jr., M. A. Korhonen and C. Y. Li, Appl. Phys. Lett.
67, 439 (1995).
28. R. Kirchheim, Acta Metall. Mater., 40, 309 (1992).
29. National Synchrotron Radiation Research Center” Synchrotron Light Source”.
30. N. Tamura, R.S. Celestre, A. A. MacDowell, H. A. Padmore, R. Spolenak, B. C.
Valek, N. Meier Chang, A. Manceau and J. R. Patel, Rev. Sci. Instrum., 73, 1369 (2002).
31. M. A. Korhonen, R. D. Black and C. Y. Li, J. Appl. Phys., 69, 1748 (1991).
32. Electronic thin film science for electrical engineers and materials scientists, K. N. Tu, J. W. Mayer, and L. C. Feldman, 1992 Macmillan Publishing Co.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top