跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃映雪
研究生(外文):Ying-xue Huang
論文名稱:應用Heart-cut技術診斷揮發性有機化合物之熱脫附行為
論文名稱(外文):Applying Heart-cut Techniques to Diagnose Thermal Desorption Profiles of Ambient Volatile Organic Compounds
指導教授:王家麟王家麟引用關係
指導教授(外文):Jia-lin Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:147
中文關鍵詞:熱脫附行為揮發性有機化合物丁式切換器
外文關鍵詞:Heart-cutDeans switchVolatile Organic CompoundsThermal desorption
相關次數:
  • 被引用被引用:4
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
現今大氣中VOCs的監測方法大多以固態吸附劑做為捕捉媒介,並藉由熱脫附方式將樣品送至氣相層析系統中進行分離及偵測,然而熱脫附行為往往在第一時間左右了層析結果的層析峰形及解析度,提高了VOCs監測方法在定量上的不確定度。而本實驗利用丁式切換器對熱脫附峰進行切片檢查,以診斷影響層析峰形之變因,瞭解熱脫附行為,並拓廣丁式切換器的應用層面。Heart-cut系統架構以丁式切換器為核心,預管柱選用無滯留能力的毛細管空管,分析管柱則為DB-1,藉由丁式切換器的切換,可控制預管柱沖堤出之樣品流往空管或DB-1,藉以達到樣品切片之目的。
VOCs未經任何分離作用即到達偵測器所測得之峰形,在此稱之為熱脫附峰,此亦代表著物種熱脫附行為的輪廓,實驗中發現VOCs的熱脫附峰呈現拖尾情形,初步推測此乃系統間的無益體積所造成,經由該切片技術對無益體積所增長之樣品帶進行分流後,樣品拖尾現象獲得大幅改善,然而卻亦意外發現被分流丟棄之部分似乎大多為重碳成分,隨後亦進一步針對VOCs的熱脫附峰進行精細切片診斷。診斷結果發現熱脫附峰各區段之物種呈現非均勻分佈趨勢,且其後端拖尾部份主要為重碳物種所貢獻。根據熱脫附峰之診斷報告,吾人認為物種分佈之非均性可能為物種傳送速率之差異所致,為驗證此闡釋,在此亦進一步針對樣品傳輸管之各項參數進行一連串最佳化探討。
最佳化之傳輸管條件為79.5 cm x 0.32 mm i.d.之毛細管空管,且必須另以加熱帶及溫度讀取裝置將溫度控制在200 °C左右。最佳化系統之RSD值可控制在0.66%〜2.00%;線性關係皆在0.999之上;而對稱因子與解析度表現相較於傳統系統,則分別有0.30%〜16.85%及10%左右的提升。本實驗使用切片技術成功達到診斷熱脫附行為之目的,並由實驗結果獲得之資訊進一步對系統進行改良,最終之最佳化系統亦皆有優於傳統系統之層析表現。
Using sorbent traps coupled with GC techniques has become the most common method for ambient VOC measurements. However, the peak shape and resolution is mainly affected by the process of thermal desorption of the sorbent trap. This might induce the uncertainties in quantification. In this study, a Deans switch heart-cut system is used to study the phenomenon. It is equipped with a deactivated capillary column, and a DB-1 column as both the precolumn and the analytical column. By controlling the Deans switch, the analytes can be routed to either the the DB-1 or the deactivated column.
In this study, the desorption of VOCs from the trap without being separated by any column is termed a thermal desorption (TD) peak. The TD peak can represent the profile during thermal desorption of a sorbent trap. Pronounced peak-tailing of the TD peak was found, and was possible arising from the dead volumes in the analytical system. The TD peak was sliced into six portions to be separated by the DB-1 column to the diagnose any discrimination with the VOC composition during the TD process. As an important and related issue of the TD process, the directions of thermal desorption of a sorbent trap were also investigated.
Surface condition of a transfer line after TD was also found to determine to some degree the transfer rates of different species, particularly the heavier compounds. Hence, different types and conditions of the transfer line are also discussed in our research. The optimum transfer line was found to be the deactivated capillary column (length = 79.5 cm, 0.32 mm ID) heated at approximately 200°C. The RSDs are within 0.66-2.00% with R2 no less than 0.999.
A novel application of the Deans switch has been developed by applying the heart-cut technique to diagnose the TD process. This peak-slicing technique not only can exam the TD profile of a sorbent trap, it also further broadens the application aspects of the Deans switch.
中文摘要 .............................................................................................. I
英文摘要 ............................................................................................ III
圖目錄 ............................................................................................... IX
表目錄 ..............................................................................................XIII
第一章 前言 ........................................................................................ 1
1-1 揮發性有機化合物(VOCs) ....................................................... 2
1-1.1 VOCs 之來源 ................................................................. 5
1-1.2 VOCs 對健康之危害 ...................................................... 8
1-1.3 VOCs 造成光煙霧之影響 ............................................... 9
1-2 揮發性有機化合物之分析方法 ............................................... 14
1-3 氣相層析技術沿革與發展 ...................................................... 17
1-4 Heart-cut 技術 ........................................................................ 23
1-4.1 原理簡介 ..................................................................... 23
1-4.2 切換裝置 ..................................................................... 25
1-4.3 應用領域 ..................................................................... 31
1-5 影響峰形變異因子 ................................................................. 32
1-5.1 額外管柱效應 .............................................................. 33
1-5.2 熱脫附行為 ................................................................. 37
1-5.3 拖尾程度之量化因子 ................................................... 41
VII
1-6 研究目的 ............................................................................... 44
第二章 Heart-cut 分析技術................................................................ 46
2-1 樣品前濃縮系統 ..................................................................... 46
2-1.1 氣動閥及管路配置 ....................................................... 46
2-1.2 吸附管製備 ................................................................. 47
2-1.3 溫度控制器 ................................................................. 52
2-1.4 自動控制介面 .............................................................. 52
2-2 前濃縮系統運作機制 ............................................................. 54
2-3 層析系統架構 ........................................................................ 57
2-4 實驗標準品 ............................................................................ 60
第三章 利用Heart-cut 技術診斷熱脫附行為 ...................................... 62
3-1 無益體積對層析峰形之影響 ................................................... 63
3-2 診斷先天熱脫附特性 ............................................................. 69
3-2.1 正向脫附 ..................................................................... 71
3-2.2 逆向脫附 ..................................................................... 78
3-3 正逆向脫附行為之小結 .......................................................... 84
第四章 脫附傳送行為 ........................................................................ 85
4-1 傳輸管溫度 ............................................................................ 85
4-2 傳輸管材質 ............................................................................ 95
4-3 傳輸管管徑 .......................................................................... 101
VIII
4-4 傳輸管長度 .......................................................................... 107
4-5 最佳化系統驗證 ................................................................... 112
4-5.1 再現性試驗 ............................................................... 113
4-5.2 檢量線試驗 ............................................................... 113
4-5.3 對稱因子與解析度試驗 .............................................. 114
第五章 結論與未來展望 .................................................................. 119
5-1 結論 .................................................................................... 119
5-2 未來展望 ............................................................................. 120
第六章 參考文獻 ............................................................................. 122
附錄一 ............................................................................................. 127
1. 王介亨; 王家麟, 以Heart-cut 技術配合單偵檢器發展氣相層析"剪裁"技術. 國立中央大學化學研究所碩士論文 民國九十三年六月.
2. Seinfeld, J. H.; Pandis, S. N., ATMOSPHERIC CHEMISTRY AND PHYSICS. John Wiley & Sons, Inc.: 1998.
3. Placet, M.; Battye, R. E.; Fehsenfeld, F. C.; Bassett, G. W., Emissions Involved in Acidic Deposition Processes.
State-of-Science/Technology Report 1 1990.
4. Sawyer, R. F.; Harley, R. A.; Cadle, S. H.; Norbeck, J. M.; Slott, R.;Bravo, H. A., Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ. 2000, 34, 2161-2181.
5. Placet, M.; Mann, C. O.; Gilbert, R. O.; Niefer, M. J., Emissions of ozone precursors from stationary sources: a critical review. Atmos. Environ. 2000, 34, 2183-2204.
6. Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063-2101.
7. Yassaa, N.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P., Isomeric analysis of BTEXs in the atmosphere using beta-cyclodextrin capillary chromatography coupled with thermal desorption and mass spectrometry. Chemosphere 2006, 63, 502-508.
8. Middleton, P., Source of air pollutants, in Composition, Chemistry, and Climate of the Atmosphere. Van Nostrand Reinhold: New York,1995; p 88-119.
9. Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmerman, P., A Global-Model of Natural Volatile Organic-Compound Emissions. J. Geophys. Res. [Atmos.] 1995, 100, 8873-8892.123
10. 新竹縣環境保護局, 新竹工業園區空氣品質改善規劃書. 1999.
11. David, D. B., Air Toxics:The Problem. EPA Journal 1991, 172.
12. 香氱環境保護署,
http://www.epd.gov.hk/epd/tc_chi/environmentinhk/air/prob_solutions/vocs_smog.html#point_1
13. 行政院環境保護署, 空氣品質監測報告. 96 年年報.
14. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L.G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C., Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 2001, 292, 719-723.
15. USEPA, Compendium Method TO-17: Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air Using Active Sampling onto Sorbent Tubes.
16. 行政院環保署環境檢驗所, 排放管道中揮發性有機化合物檢測方法-揮發性有機化合物採樣組裝卅氣相層析質譜儀法. NIEA A721.70B 1997.
17. 行政院環保署環境檢驗所, 空氣中氣態有機溶劑檢驗方法—以活性碳吸附之氣相層析/火焰離子化偵測法. NIEA A710.10T 1992.
18. USEPA, Compendium Method TO-15: Determination of volatile organic compounds(VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography / mass spectrometry.
19. 行政院環保署環境檢驗所, 空氣中揮發性有機化合物檢測方法-不�袗�採樣筒卅氣相層析質譜儀法. NIEA A715.13B 2008. 124
20. Simo, R.; Grimalt, J. O.; Albaiges, J., Field sampling and analysis of volatile reduced sulphur compounds in air, water and wet sediments by cryogenic trapping and gas chromatography. J. Chromatogr. A 1993, 655, 301-307.
21. Harper, M., Sorbent trapping of volatile organic compounds from air. J. Chromatogr. A 2000, 885, 129-151.
22. USEPA, Compendium Method TO-1: Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air Using Tenax-TA Adsorption and Gas Chromatography/Mass Spectrometry(GC/MS).
23. USEPA, Compendium Method TO-2: Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air by Carbon Molecular Sieve Adsorption and Gas Chromatography/Mass Spectrometry(GC/MS).
24. 行政院環保署環境檢驗所, 空氣中揮發性含鹵素碳氫化合物檢驗方法-以Tenax-TA 吸附劑採樣之氣相層析法. NIEA A714.10T 1994.
25. Tanner, D.; Helmig, D.; Hueber, J.; Goldan, P., Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere. J. Chromatogr. A 2006, 1111, 76-88.
26. 行政院環保署環境檢驗所, 空氣中有機光化前驅物自動連續監測方法- 氣相層析法. NIEA A505.11B 2006.
27. Dunn, M.; Shellie, R.; Morrison, P.; Marriott, P., Rapid sequential heart-cut multidimensional gas chromatographic analysis. J. Chromatogr. A 2004, 1056, 163-169.
28. Bertsch, M., Two-Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications - Part 1: Fundamentals, Conventional Two-Dimensional Gas Chromatography, Selected Applications. J. High. Resolut. Chromatogr. 1999, 22, 647-665.125
29. Bertsch, M., Methods in high resolution gas chromatography. Two-dimensional techniques. J. High. Resolut. Chromatogr. 1978, 1, 187-194.
30. Deans, D. R., A new technique for heart cutting in gas
chromatography. Chromatographia 1968, 1, 18-22.
31. Luigi Mondello, A. C. L., Keith D. Bartle, A. C. Lewis, Multidimensional High Resolution Gas Chromatography. In Multidimensional Chromatography, 2002; pp 47-75.
32. Edward, A.P.; Vanessa R.K., Multidimensional GC Analysis of Complex Samples. Global Analytical Solutions, Gerstel 2005.
33. Latella, A.; Stani, G.; Cobelli, L.; Duane, M.; Junninen, H.; Astorga, C.; Larsen, B. R., Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. J. Chromatogr. A 2005, 1071, 29-39.
34. http://www.epa.gov/airprogm/oar/oaqps/pams.
35. Ma, Y.; Hays, M. D., Thermal extraction-two dimensional gas chromatography-mass spectrometry with heart-cutting for nitrogen heterocyclics in biomass burning aerosols. J. Chromatogr. A 2008, 1200, 228-234.
36. Bhushan, A., SYSTEM OPTIMIZATION FOR REALIZING A
MINIATURIZED GAS CHROMATOGRAPH SENSOR FOR RAPID
CHEMICAL ANALYSIS 2006.
37. Ryan, M. M.; John, W. D., Extracolumn Effects. LCGC
Troubleshooting 2004, 7, 1050.
38. Sanchez, J. M.; Sacks, R. D., On-Line Multibed Sorption Trap and Injector for the GC Analysis of Organic Vapors in Large-Volume Air Samples. Anal. Chem. 2003, 75, 978-985.126
39. Chen, T.-Y.; Li, M.-J.; Wang, J.-L., Sub-second thermal desorption of a micro-sorbent trap for the analysis of ambient volatile organic compounds. J. Chromatogr. A 2002, 976, 39-45.
40. Dolan, J. W., Why do peaks tail? Lc Gc Europe 2003, 16, 610.
41. How is the Calculation of Peak Symmetry factor done?
http://www.chem.agilent.com/enUS/Support/FAQs/DS/Software/Cerity-Pharmaceutical/Pages/KB004398.aspx
42. 吳東明, 中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較. 國立中央大學化學研究所碩士論文 民國九十四年六月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊