跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張溢修
研究生(外文):I-Hsiu Chang
論文名稱:藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
論文名稱(外文):Promotion of Hydrogenation Characteristics for Li3N by Addition of Pd-Ni and Pd-Co Catalysts
指導教授:王冠文王冠文引用關係
指導教授(外文):Kuan-wen Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:96
中文關鍵詞:鈀鎳合金觸媒鈀鈷合金觸媒氮化系統溢流效應儲氫材料氫化反應
外文關鍵詞:Li3NPd-Co alloyTPRHydrogenationPd-Ni alloySpillover
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫氣被視為未來最有發展的能源之ㄧ。在氫能源的發展中,燃料
的補充方法、氫氣儲存材料,以及氫能源設備都是重要的關鍵技術。
有效的氫氣儲存技術對於氫能源經濟的發展有決定性的影響。
氮化鋰具有高的氫氣儲存量 (10.4 wt%)而被視為非常有潛力的
儲氫材料。在本研究中,藉由著鈀、鈀鎳合金還有鈀鈷合金觸媒的添
加使得儲氫材料氮化鋰改變其氫化性質。其氫化的性質藉由程式溫度
控制系統 (TPR) 量測。並使用X光粉末繞射儀(XRD)量測在氫化反應
前後的結構變化。在未添加氮化鋰的氫化研究中,吸氫的起始溫度大
約在450 K,並且在高溫會有脫氫的訊號位於660 K,意味著氮化鋰的
氫化會在高溫形成不穩定的氫化物。為了增益其氫化性質,藉由添加
鈀鎳與鈀鈷的合金觸媒改質。結果顯示鈀鎳與鈀鈷合金觸媒添加,會
因溢流效應能使起始氫化溫度下降。此外,原本氮化鋰在高溫產生不
穩定氫化物的情形,也藉由鈀鎳與鈀鈷觸媒的添加而趨於穩定,高溫
產生脫氫的訊號消失。當氮化鋰和鈀鎳(15:85)、鈀鈷(15:85)合金觸
媒以1:1的比例混合,可使起始氫化溫度分別從原本氮化鋰的450 K降
至440 K和370 K。若以1:4比例混合,兩者的起始吸氫溫度進一步下
降至420 K以及360 K,且吸氫量分別為107 %以及58%。因此,氮化
鋰的氫化動力學藉著鈀鈷與鈀鎳(15:85)合金觸媒的添加能有效的提
升。
Hydrogen is viewed as one kind of promising clean fuel of the future.
The refueling method, the hydrogen storage, and the handling facilities are critical factors in the development of a hydrogen technology for transportation. An effective hydrogen storage technology is required to make this source of energy economically viable.
Li3N is a potential hydrogen storage material owing to its high theoretical H2 capacity (10.4 wt%). In this study, the Pd, Pd-Ni and Pd-Co alloy catalysts were used to modify Li3N to enhance its hydrogenation kinetics. The hydrogenation properties were investigated by a technique
of temperature programmed reduction (TPR). The identification of phase structures of materials before and after hydrogenation was carried out by the X-ray powder diffraction (XRD) method. The hydrogenation curves by TPR measurements displayed that the initial hydrogenation
temperature (Ti) for Li3N was about 450 K. A following desorption peak starting at 660 K indicates that the hydride formed was not stable. For the modified Li3N, the Ti and absorption capacity was both changed by catalyzing with Pd-Ni and Pd-Co alloy catalysts. The hydrogenation
kinetics of Li3N was promoted due to the spillover of hydrogen from alloy catalysts to Li3N and their Ti was lower than that of unmodified Li3N. Moreover, the Li3N hydride formed was stabilized by the PdxNi100-x
PdxCo100-x modification and no hydrogen desorption peak was observed at high temperature. When 1:1 ratio of materials and catalysts is used, Pd15Ni85 and Pd15Co85 can decrease the Ti from 450 to 440 K and 370 K, respectively. In the case of Li3N : Pd15Ni85 = 1:4, the Ti of PdNi and PdCo modified Li3N further decreases to 420 K and 360 K and the their hydrogenation capacity is 107 % and 58 % of Li3N, respectively. As a result, the hydrogenation kinetic could effectively be promoted by addition of Pd15Ni85 and Pd15Co85 alloy catalysts.
Abstract
List of figures iv
List of tables vii
Chapter Ⅰ Introduction 1
1.1 Hydrogen Storage 2
1.2 Physical Hydrogen Storage 5
1.3 Chemical Hydrogen Storage 9
1.3.1 Metal hydride 11
1.3.2 Intermetallic compounds 14
1.3.3 Complex hydride 14
Chapter Ⅱ Literature Review 19
2.1 Hydride Destabilization 19
2.1.1 Catalytic additives 19
2.1.2 Reduction of materials size 21
2.1.3 Spillover Effect 21
2.2 Li-N-H Materials and Their Modification 26
2.2.1 L-N-H system 26
2.2.2 L-Mg-N-H system 28
2.3 TPR Results of Pd, Co, and Pd-Ni alloys 33
2.3.1 TPR result of Pd 33
2.3.2 TPR result of Co 33
2.3.3 TPR result of Pd-Ni alloys 36
2.4 Motivation in this study 40
Chapter Ⅲ Experimental procedure 41
3.1 Preparation of Materials 41
3.1.1 Li3N 41
3.1.2 PdxNi100-x alloy catalysts 41
3.1.3 PdxCo100-x alloy catalysts 43
3.2 Characterization of Catalysts 45
3.2.1 Temperature programmed reduction (TPR) 45
3.2.2 X-ray Power Diffraction (XRD) 45
Chapter Ⅳ Results and Discussion 48
4.1 The As-received Li3N 48
4.1.1 The Hydrogenation of Li3N by TPR Analysis 48
4.1.2 The Structure Characterization of L3N by XRD
Measurement 50
4.2 PdxNi100-x Alloy Catalysts and Their Modification Effect 52
4.2.1 The XRD Characterization of As-prepared PdxNi100-x 52
4.2.2 TPR Measurement of Hydrogenation for PdxNi100-x 52
4.2.3 TPR Measurement of Hydrogenation for PdxNi100-x
Modified Li3N 55
4.3 PdxCo100-x Alloy Catalysts and Their Modification Effect 62
4.3.1 The XRD Characterization of As-prepared PdxCo100-x 62
4.3.2 TPR Measurement of Hydrogenation for PdxCo100-x 62
4.3.3 TPR Measurement of Hydrogenation for PdxCo100-x
Modified Li3N 65
4.4 Comparison of the PdxCo100-x and PdxNi100-x Modification Effect on
Hydrogenation of Li3N 71
4.5 Hydrogenation of Li3N Modified by Pd15Ni85/C Catalysts 73
Chapter Ⅳ Conclusions 75
References 77
[1] U.S. Department of Energy, Office of Basic Energy Science: Basic Research Needs for the Hydrogen Economy, Report of BES Workshop on Hydrogen Production, Storage and Use, Argonne National Laboratory, May 13-15 2003.
[2] J. M. Ogden, Int. J. Hydrogen Energy, 1999, 24, 709.
[3] B. Dogan, ASME Conference PVP2006-ICPVT-11, Vancouver,
Canada, July 23–27, 2006.
[4] L. Schlapbach and A. Zuttel, Nature, 2001, 414, 353.
[5] R. von Helmolt and U. Eberle, J. Power Sources, 2007, 165, 833.
[6] Quantum Technologies, Inc., Irvine.
[7] R. C. Weast, M. J. Astle and W. H. Beyer, CRC handbook of chemistry and physics. 64th ed., Boca Raton, FL: CRC Press; 1983.
[8] M. L. Trudeau, MRS Bull, 1999, 24, 23.
[9] The Linde Group, Wiesbaden.
[10] H. Diaz, A. Percheron-Gue´gan and J. -C. Achard, Int. J. Hydrogen Energy, 1979, 4, 445.
[11] G. Sandrock and G. Thomas, Appl. Phys. A, 2001, 72, 153.
[12] B. Bogdanovic and M. Schwickardi, J. Alloys Compd., 1997, 253, 1.
[13] W. Grochala and P. P. Edwards, Chem Rev., 2004, 104, 1283.
[14] F. SchMth, B. Bogdanovic and M. Felderhof, Chem. Commun., 2004,37, 2249.
[15] J. J Vajo, S. L. Skeith and F. Mertens, J. Phys. Chem. B, 2005, 109,
3719.
[16] K. Miwa, N. Ohba and S. Towata, Phys. Rew. B, 2004, 69, 245120.
[17] S. Orimo, Y. Nakamori and A. Zu¨ttel, Mater. Sci. Eng. B, 2004, 108,
[18] P. Chen, Z. Xiong, J. Luo, J. Lin, K. L. Tan, Nature, 2002, 420, 302.
[19] J. Lu, Z. Z. Fang, H. Y. Sohn, Phys. Chem. B, 2006, 110, 14236.
[20] T. Ichikawa, K. Tokoyoda, H. Y. Leng and H. Fujii, J. Alloys Compd., 2005, 400, 245.
[21] W. Grochala and P. P. Edwards, Chem. Rev., 2004, 104, 1283.
[22] A. Zaluska, L. Zaluski and J. O. Strom-Olsen, Appl. Phys. A, 2001, 72, 157.
[23] M. Zhu, H. Wang, L. Z. Ouyang and M. Q. Zeng, Int. J. Hydrogen Energy, 2006, 31, 251.
[24] R. Wiswall, Hydrogen Met II, 1978, 29, 209.
[25] Y. Fukai, Springer series in materials science, 1993.
[26] G. Barkhordarian, T. Klassen and R. Bormann, J. Alloys Compds., 2004, 364, 242.
[27] A. Zaluska, L. Zaluski and J. O. Strom-Olsen, J. Alloys Compds., 1999, 288, 217.
[28] H. Imamura, K. Masanari, M. Kusuhara, H. Katsumoto, T. Sumi and Y. Sakata, J. Alloys Compds., 2005, 386, 211.
[29] J. Huot, G. Liang, S. Boily, A. V. Neste and R. Schulz, J. Alloys Compds., 1999, 293, 495.
[30] J. V. Vucht, F. A. Kuijpers and H. Bruning, Philips Res Rep, 1970, 25, 133.
[31] J. J. Reilly and R. H. Wiswall, Inorg. Chem., 1974, 13, 218.
[32] J. J. Reilly and G. D. Sandrock, Sci. Am., 1980, 242, 118.
[33] E. Zintl and G. Z. Brauer, Electrochem., 1935, 41, 102.
[34] L. Ouvrard, C.R. Acad. Sci. Paris, 1892, 114, 120
[35] R. Marx and Z. Anorg, Allg. Chem., 1997, 623, 1912.
[36] F. W. Dafert and R. Miklauz, Monatsh. Chem., 1909, 30, 649.
[37] F. W. Dafert and R. Miklauz, Monatsh. Chem., 1910, 31, 981.
[38] O. Ruff and H. Goeres, Chem. Ber., 1910, 44, 502.
[39] D. H. Gregory, J. Mater. Chem., 2008, 18, 2321.
[40] F. SchMth, B. Bogdanovic and M. Felderhof, Chem. Commun., 2004, 37, 2249.
[41] S. Orimo, Y. Nakamori, J. R. Eliseo, A. Zuttel and C. M. Jensen, Chem. Rev., 2007, 107, 4111.
[42] J. J. Vajo and G. L. Olsen, Scr. Mater., 2007, 56, 829-834.
[43] J. J. Vajo, F. Mertens, C. C. Ahn, R. C. Bowman, and B. J. Fultz, J. Phys. Chem. B, 2004, 108, 13977.
[44] B. Bogdanovic and M. Schwickardi, J. Alloys Compd., 1997, 253, 1.
[45] B. Bogdanovic, U. Eberle, M. Felderhoff and F. Schuth, Scr. Mater., 2007, 56, 813.
[46] H. W. Brinks, B. C. Hauback, S. S. Srinivasan and C. M. Jensen, J. Phys. Chem. B, 2005, 109, 15780.
[47] H. Wu, Chem. Phys. Chem., 2008, 9, 2157.
[48] A. J. Robell, E. V. Ballou and M. Boudart, J. Phys. Chem., 1964, 68, 2748.
[49] Y. W. Li and R. J. Yang, J. Phys. Chem. C, 2007, 111, 11086.
[50] Y. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128, 25.
[51] R. T. Yang and Y. Wang, J. Am. Chem. Soc., 2009, 131, 12.
[52] Y. H. Hu and E. Ruckenstein, J Phys Chem A, 2003, 107, 9737.
[53] Y. H. Hu and E. Ruckenstein, Ind Eng Chem Res., 2003, 42, 5135
[54] Y. H. Hu and E. Ruckenstein, Ind Eng Chem Res., 2004, 43, 2464.
[55] T. Ichikawa,K. Tokoyoda, H. Y. Leng and H. Fujii, J. Alloys Compd., 2005, 400, 245.
[56] C. W. Chou, S. J. Chu, H. J. Chiang and C. Y. Huang, J. Phys. Chem. B, 2001, 105, 38.
[57] R. J. Wu, J. G. Wu and T. K. Tsai, Sensors and Actuators B, 2006, 120, 104-109.
[58] R. J. Wu, C. H. Hu, C. T. Yeh and P. G. Su, Sensors and Acuators B,2003, 96, 596.
[59] J. Jansson, J. Catal., 2000, 194, 55.
[60] K. W. Wang, S. R. Chung and C. W. Liu J. Phys. Chem. C, 2008, 112, 10242.
[61] P. Wynblatt and R. C. Ku, Surf. Sci., 1977, 65, 511.
[62] A. Vazquez and F. Pedraza, Appl. Surf. Sci., 1996, 99, 213.
[63] K. W. Wang, S. R. Chung, W. H. Hung and T. P. Perng, Appl. Surf. Sci., 2006, 252, 8751.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top