跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳塘
研究生(外文):Chia-Tang Chen
論文名稱:顆粒間交互作用抑制鋁奈米微粒超導行為
論文名稱(外文):Suppression of superconductivity in Al nanoparticles by interparticle interactions.
指導教授:李文献李文献引用關係
指導教授(外文):Wen-Hsien Li
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:庖立順磁零維超導奈米交互作用抑制
外文關鍵詞:Pauli paramagnetismAlinteractionnanoparticlesuppressionFluctuationZero-dimensional superconductor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用熱蒸鍍法蒸鍍製作鋁奈米微粒,藉由X-ray Diffraction(XRD)、Scanning Electron Microscopy(SEM)、Atomic Force Microscope(AFM)以及共同體積函數等工具判斷粒徑為7.5 nm,X-ray Fluorescence Spectrometer(XRF)、結構精算軟體(GSAS)分析XRD繞射圖判定樣品成分均為鋁。磁化率量測樣品在低於2.27 K出現超導態,且得到超導溫度比塊材公認值之1.18 K高92%,推測可能是庫倫阻塞效應造成的。本論文使用弱屏蔽模型討論微觀機制。另外在外加小磁場下發現樣品抗磁率變好,與庖立順磁磁化率有關。磁性量測亦觀察到自旋極化效應,與之前論文得到的結果一致。
利用壓合工具逐次對樣品壓合改變顆粒間距,探討顆粒與顆粒之間互相影響之效應,發現超導溫度隨顆粒間距縮小而逐漸降低,回到塊材的趨勢,推測可能是由於單電子穿隧效應使得電荷分佈被改變,破壞相位,壓制超導溫度。超導抗磁磁化率也隨著顆粒間距縮小而逐漸變弱,可能是超導屏蔽電流產生的感應磁場互相影響,使的抗磁磁化率變弱。
Al nanoparticles were fabricated by employing the thermal evaporation method.X-ray Diffractio(XRD),Scanning Electron Microscopy(SEM) and Atomic Force Microscope(AFM) were used to determine the pariticle size. The particles size thus determined is 7.5 nm.Profile refinement analysis of the XRD pattern and the XRF experiment indicate that the sample is single phased.
The ac magnetic susceptibility were measured by Physical Property Measurement System to explore the superconducting characteristics and the superconducting transitions were observed at 2.27 K.Compared with the bulk value of Tc=1.18 K,Tc increasing 92%.We contribute this increase of Tc to the coulomb blockade effect.We discuss this phenomenon by weak screening model.When applied a small magnetic field,superconducting diamagnetic responses become more effective.Spin polarization that indicates the magnetic nature of the particles has also been observed.
To investigate the effect of the interparticle interaction,we changed the interparticle separation by cold press the sample using a hydraulic press,followed by the routine magnetic measurement.A series of samples at different packing fractions is investigated.We found that the Tc decreases with decreasing interparticle separations,and then gradually converges to bulk value.
Our observes are discussed by single electron tunneling effect that change the charging distribution,destroy the coherence phase,and depression the superconductivity.Superconducting diamagnetic susceptibility gradually weaked when the interparticle interaction becomes stronger. We use screening current model to explain this phenomenon.
目錄
論文摘要……………………………………………………i
Abstract……………………………………………………ii
致謝…………………………………………………………iv
目錄…………………………………………………………v
圖目與表目…………………………………………………vii
第一章、簡介……………………………………………1
1-1 鋁的超導研究………………………………………1
1-2 超導體發展概述……………………………………3
1-3 塊材鋁的超導特性…………………………………9
1-4 奈米粒子的超導特性………………………………11
1-5 實驗動機……………………………………………13
第二章、樣品製備方法與實驗儀器……………………17
2-1 奈米微粒的製備……………………………………17
2-2 粒徑分析……………………………………………20
2-3 成份分析……………………………………………30
2-4 物理特性量測系統介紹……………………………33
第三章、自旋極化………………………………………37
3-1 超順磁系統…………………………………………37
3-2 奈米微粒的自旋極化………………………………39
3-3 磁化特性曲線擬合…………………………………40
3-4 熱對磁矩及飽和磁化強度之影響…………………42
第四章、奈米微粒的超導特性…………………………46
4-1 奈米微粒的超導相變理論…………………………46
4-2 鋁奈米微粒的超導溫度……………………………49
4-3 奈米微粒的超導臨界磁場…………………………59
4-4 超導溫度附近磁化率對高磁場的反應……………62
4-5 庖利順磁磁化率與外加磁場關係…………………65
第五章、顆粒間交互作用對超導參數之效應…………71
5-1 顆粒聚合體壓合模具………………………………71
5-2 顆粒間距估算………………………………………72
5-3 不同壓合密度的磁特性曲線實驗結果……………74
5-4 壓合密度對超導抗磁磁化率之影響………………77
5-5 壓合密度對超導溫度之影響………………………79
第六章、結論……………………………………………83
參考文獻………………………………………………附於各章節最後
第一章:
[1] B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Letters 17, 632(1966).
[2] R. W. Cohen and B. Abeles, Phys. Rev. 168, 444 (1968).
[3] J. J. Hauser, Phys. Rev. B 3, 1611 (1971).
[4] V. L. Ginzburg, Phys. Letters 13, 101 (1964) Ginzburg.
[5] O. F. Kammerer and M. Strongin, Phys. Letters 17, 224 (1965).
[6] M. Strongin, A. Paskin, O. F. Kammerer, and M. Garber, Phys. Rev.Letters 14, 362 (1965).
[7] B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Letters 17, 632(1966).
[8] R. H. Parmenter, Phys. Rev. 154, 353 (1967).
[9] D. U. Gubser and A. W. Webb, Phys. Rev. Lett. 35, 104 (1975).
[10] B. Sundqvist and O. Rapp, J. Phys. F 9, L161 (1979).
[11]P. E. Seiden, Phys. Rev. 179, 458 (1969).
[12] M. M. Dacorogna, M. L. Cohen, and P. K. Lam, Phys. Rev. B 34, 4865 (1986).
[13]G. Profeta, C. Franchini, N. N. Lathiotakis, A. Floris, A. Sanna, M. A. Marques, M. Luders, S. Massidda, E. K. Gross, and A. Continenza, Physical Review Letters 96 047003 (2006).
[14] D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74, 3241 (1995).
[15] C. T. Black, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76, 688(1996).
[16] J. von Delft, A. D. Zaikin, D. S. Golubev, and W. Tichy, Phys. Rev. Lett. 77, 3189 (1996).
[17] Baopeng Cao, Colleen M. Neal, Anne K. Starace, Yurii N. Ovchinnikov, Vladimir Z. Kresin, and Martin F. Jarrold, Journal of Superconductivity and Novel Magnetism 21, 163 (2008).
[18] J. Bardeen, L. Cooper, and J. R. Schrieffer, Phys. Rev.108, 1175(1957).
[19] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[20] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
[21] Yoichi Kamihara,,, Takumi Watanabe,, Masahiro Hirano,, and, Hideo Hosono,Journal of the American Chemical Society 2008 130 (11), 3296-3297.
[22] Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, and Q. K. Xue, Science 306, 1915 (2004).
[23] I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).
[24] I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. Lett. 92, 207002 (2004).
[25] http://nobelprize.org/
[26] R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962).
[27] P. W. Anderson, J. Phys. Chem. Solids 11, 28 (1959).
[28]何均考,”錫奈米微粒的超導參數與自旋極化”,中央大學碩士論文(2006).
[29]周和穆,”零維奈米鉛粉粒超導耦合強度與粒徑關係探討”,中央大學碩士論文(2003).
第二章:
[1]K. Kimoto, I. Nishida, Japan J. Appl. Phys., 6(9), 1047(1967).
[2]N. Wada, Jpn. J. Appl. Phys. 6, 553 (1967).
[3]Wada, Nobuhiko, Ichikawa, Masaru, Jpn. J. Appl. Phys. 15, 775 (1976).
[4]S. Yatsuya, S. Kasukabe, and R. Uyeda, Jpn. J. Appl. Phys. 12, 1675 (1973).
[5]吳泰伯、許樹恩,X 光繞射原理與材料結構分析,第三版,中國材料科學學會(2004).
[6]王進威,”擬合X光繞射峰形判定奈米微粒粉末的粒徑分佈” 中央大學碩士論文(2006).
[7] C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).
[8]R. Espiau de Lamaestre and H. Bernas, Phys. Rev. B 73, 125317(2006).
[9]Rietveld,H.M.(1969). J. Appl. Crystallogr.,2,65-71.
[10]Allen C. Larson and Robert B. Von Dreele, GSAS: General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, 1998, Report No. LAUR 86-748.
[11] Dinesh Martien,”Introduction to:AC Susceptibility”,Quantum Design.
第三章:
[1]Soshin Chikazumi原著,張煦、李學養合譯,磁性物理學,聯經出版社(1982),第四章.
[2]張立德、牟季美著,奈米材料和奈米結構,滄海書局(2002),p62-p66.
[3] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Phys. Rev. B 69, 174411 (2004).
[4] T. Koide, H. Miyauchi, J. Okamoto, T. Shidara, A. Fujimori, H. Fukutani, K. Amemiya, H. Takeshita, S. Yuasa, T. Katayama, and Y. Suzuki, Phys. Rev. Lett. 87, 257201 (2001).
[5] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
[6]吳勝允、李文献,物理雙月刊 二十八卷五期(2006).
[7] J. G. E. Harris, J. E. Grimaldi, D. D. Awschalom, A. Chiolero, and D. Loss, Phys. Rev. B 60, 3453 (1999).
[8] S. Mørup and B. R. Hansen, Phys. Rev. B 72, 024418 (2005).
[9] W.-H. Li, C.-W. Wang, C.-Y. Li, C. K. Hsu, C. C. Yang, and C.-M. Wu, Phys. Rev. B 77, 094508 (2008).
[10] S. Mørup and C. Frandsen, Phys. Rev. Lett. 92, 217201 (2004).
第四章:
[1]張玉恆、李玉芝著,超導物理,P40~P43.
[2]B. Mühlschlegel, D. J. Scalapino, and R. Denton, Phys. Rev. B 6, 1767 (1972).
[3]R. A. Buhrman and W. P. Halperin, Phys. Rev. Lett. 30, 692 (1973).
[4] V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 20, 1064(1950).
[5]S. Bose, P. Raychaudhuri, R. Banerjee, P. Vasa, and P. Ayyub, Phys. Rev. Lett. 95, 147003 (2005).
[6]J. P. Issi, Aust. J. Phys. 32, 585 (1979).
[7]Haussermann, U.; Soderberg, K.; Norrestam, R. J. Am. Chem. Soc.124,15359(2002).
[8]M. L. Tian, J. G. Wang, N. Kumar, T. H. Han, Y. Kobayashi, T. E.Mallouk, and M. H. W. Chan, Nano Lett. 6, 2773 (2006).
[9]F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284,1335(1999).
[10]R. König, A. Schindler, and T. Herrmannsdörfer, Phys. Rev. Lett. 82, 4528 (1999).
[11]A. Schindler, R. König, T. Herrmannsdörfer, H. F. Braun, G. Eska, D. Günther, M. Meissner, M. Mertig, R. Wahl and W. Pompe, Europhys. Lett. 58, 885 (2002).
[12]A. P. Tsai, N. Chandrasekhar, and K. Chattopadhyay, Appl. Phys. Lett. 75, 1527 (1999).
[13]W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B 68, 184507 (2003).
[14]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
[15]X. F. Cui, M. Zhao, and Q. Jiang, Thin Solid Films 472, 328 (2005).
[16]M. Strongin, O. F. Kammerer, J. E. Crow, R. D. Parks, D. H. Douglass, Jr., and M. A. Jensen, Phys. Rev. Letters 21, 1320 (1968).
[17]J. M. Dickey and A. Paskin, Phys. Rev. Letters 21, 1441 (1968).
[18]J. M. Dickey and A. Paskin, Phys. Rev. B 1, 851 (1970).
[19] Guy Deutscher,Superconductivity:Conventional and Unconventional,Springer-Verlag,Ch.7 (2007).
[20] Michael Tinkhan,Introduction to superconductivity:Second Edition, McGraw-Hill Book Company (2004).
[21] D. Pines, Phys. Rev. 109, 280 (1958).
[22] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[23]P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
[24]S. Matsuo, H. Sugiura, and S. Noguchi, J. Low Temp. Phys. 15, 481 (1974).
[25]J. P. Hurault, K. Maki, and M. T. Beal-Monod, Phys. Rev. B 3, 762 (1971).
[26] S. Reich, G. Leitus, R. Popovitz-Biro, and M. Schechter, Phys. Rev. Lett. 91, 147001 (2003).
[27] W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B 68, 184507 (2003).
[28] D.H. Martin, Megnetism in Solids, Iliffe Books Ltd, (1967).
[29] E. Bernardi, A. Lascialfari, and A. Rigamonti,Phys. Rev. B 74, 134509 (2006).
第五章:
[1] 陳志瑋,”調控鎳奈米微粒粉末的磁化強度”,中央大學碩士論文(2006).
[2] J. F. Cochran, D. E. Mapother, and R. E. Mould,Phys.Rev.103,1657(1956).
[3] Reinhard König, Alexander Schindler, Thomas Herrmannsdörfer and Hans F. Braun,Advances in Solid State Physics.40,729(2000).
[4] D. Fay and J. Appel, Phys. Rev. B62, 14 350 (2000).
[5]翁世宇,”微粒間交互作用對奈米錫超導參數之影響 ”,中央大學碩士論文(2007).
[6]張玉恆、李玉芝著,超導物理,第十二章.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊