跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳靖涵
研究生(外文):Jing-Han Wu
論文名稱(外文):Study of Zγ-> e+e-γ Process with CMS Detector at Large Hadron Collider
指導教授:張元翰
指導教授(外文):Yuan-Hann Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:84
中文關鍵詞:大強子對撞機
外文關鍵詞:LHCCMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文模擬歐洲大強子對撞機在質心能量為14兆電子伏特高能量的運作下,利用CMS偵測器量測對撞產生Z0γ衰變為e+e-γ的事件。文中所使用的蒙地卡羅數據資料經由事件產生器和CMS套裝軟體完整的模擬實際碰撞情況,其中CMS軟體包含了:模擬粒子與偵測器的作用,以及偵測訊號的數位化處理。我們考慮的大量的背景樣本使模擬條件更接近真實情況。
所選取的事件在CMS偵測器涵蓋範圍內,Z0衰變產生的電子橫向動量需大於10 GeV/c且所選的光子的橫向動量也需大於20 GeV/c。我們量測到在1 fb-1數據資料中230.00個訊號事件以及126個背景事件通過所使用的選擇條件。
其中Z+jets支配了117個背景事件,支配92.86%的背景事件為主要的背景來源。此事件統計上的意義經公式計算得到16.40。

因此,利用大強子對撞機運作初期所產生的0.1 fb-1的實驗數據即可量測統計意義大於5的Z0γ事件。
We present a simulation of pp?Z0γ process with the e+e-γ final state at using Compact Muon Solenoid detector at Large Hadron Collider. The Monte Carlo samples are fully simulated through the event generator and CMSSW that includes the detector simulation and digitization. In order to achieve realism, we consider a large set of background samples to in this study.
The electrons from Z decay are selected with PTe > 10 GeV/c and the photon is selected with PTγ> 20 GeV/c within the coverage of CMS detector. There are 230 signal events and 126 background events measured after the Zγ selection criteria at 1 fb-1. There are 117 background event form Z+jets process that dominates 92.86 % of the background contribution. The significance is calculated to be 16.40.
As a result, the Z0γ process can be established with the signal statistical sensitivity better than 5σ in the early phase of LHC with the integrated luminosity of 0.1 fb-1.
1. Introduction-----------------------------------------------------------------------------------1
1.1 The Standard Model---------------------------------------------------------------------1
1.2 Triple Gauge Coupling------------------------------------------------------------------5
1.3 pp Z Production---------------------------------------------------------------------8
1.3.1 Review of Z Measurement at CDF--------------------------------------------- 9
1.3.2 Review of Z Measurement at D0------------------------------------------------9
2. The Experimental Apparatus-------------------------------------------------------------- 10
2.1 The Large Hadron Collider----------------------------------------------------------- 10
2.2 The Compact Muon Solenoid Detector--------------------------------------------- 11
2.2.1 Tracker----------------------------------------------------------------------------- 13
2.2.2 Electromagnetic Calorimeter----------------------------------------------------14
2.2.3 Hadronic Calorimeter-------------------------------------------------------------15
2.2.4 Muon Chamber--------------------------------------------------------------------15
2.2.5 Magnet----------------------------------------------------------------------------- 16
2.3 Triggers and Data Acquisition System----------------------------------------------17
2.3.1 Level-1 Triggers------------------------------------------------------------------ 17
2.3.2 High-Level Triggers--------------------------------------------------------------17
3. CMS Software Components and Simulation--------------------------------------------19
3.1 Simulation Process---------------------------------------------------------------------19
3.1.1 Event Generator-------------------------------------------------------------------19
3.1.2 Geant4 Simulation----------------------------------------------------------------19
3.1.3 Digitization------------------------------------------------------------------------20
3.2 Algorithm of Physical Quantity and Event Filter--------------------------------- 20
3.2.1 Supercluster Algorithm in the ECAL------------------------------------------20
3.2.2 Position Measurement in the ECAL-------------------------------------------- 21
3.2.3 Event Filter------------------------------------------------------------------------- 22
3.3 Objects Reconstruction--------------------------------------------------------------- 23
3.3.1 Electron Reconstruction--------------------------------------------------------- 23
3.3.2 Photon Reconstruction-----------------------------------------------------------24
3.3.3 Muon Reconstruction------------------------------------------------------------ 25
3.3.4 Jet Reconstruction---------------------------------------------------------------- 25
3.3.5 Missing ET Reconstruction------------------------------------------------------26
3.4 Signal and Background Datasets---------------------------------------------------- 26
3.4.1 The Signal Datasets---------------------------------------------------------------26
3.4.2 The Background Datasets--------------------------------------------------------29
3.4.3 The Calculation of the Expected Event Yield--------------------------------- 34
4. Data Analysis--------------------------------------------------------------------------------39
4.1 Electron Selection Criteria------------------------------------------------------------ 39
4.1.1 Electron Identification------------------------------------------------------------ 40
4.1.2 Electron Reconstructed Efficiency----------------------------------------------43
4.2 Z Boson Selection Criteria------------------------------------------------------------ 45
4.2.1 Z Boson Event Selection--------------------------------------------------------- 45
4.2.2 Z Boson Reconstructed Efficiency---------------------------------------------- 46
4.3 Photon Selection Criteria-------------------------------------------------------------- 48
4.3.1 Photon Identification------------------------------------------------------------- 48
4.3.2 Photon Reconstructed Efficiency----------------------------------------------- 49
4.4 Z0 Event Selection Criteria----------------------------------------------------------- 52
4.4.1 Z0 Selection-------------------------------------------------------------------------- 52
4.4.2 Z0 Selection Efficiency---------------------------------------------------------- 53
4.5 The Event Yields of Signal and Backgrounds-------------------------------------- 54
4.6 The Main Background----------------------------------------------------------------- 61
4.7 Systematic Uncertainties-------------------------------------------------------------- 63
4.8 Result------------------------------------------------------------------------------------ 64
5. Summary------------------------------------------------------------------------------------- 67
Reference--------------------------------------------------------------------------------------- 68
Appedix----------------------------------------------------------------------------------------- 70
[1] http://cpepweb.org/
[2] S. L. Glashow, Nucl. Phys., 22, 579 (1961)
[3] S. Weinberg, Phys. Rev, Lett., 19, 1264 (1967)
[4] A. Salam, Proceedings of the Eight Nobel Symposium, ed. by N.
Svartholm, Alqvist & Wiskell, Stockholm, (1968).
[5] Gordon Kane (1993), “Modern elementary particle physics”
[6] U. Baur and E. L. Berger, Phys. Rev. D 41, 1476 (1990)
[7] K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B282, 253
(1987)
[8] G. J. Gounaris et al., Phys. Rev. D 61, 073013 (2000)
[9] K. Hagiwara et al., Nucl. Phys. B282, 253 (1987)
[10] U. Baur and E.L. Berger, Phys. Rev. D 47, 4889 (1993)
[11] J. Deng., Thesis, Department of Physics, Duke University (2008)
[12] Ferapontov, Alexey V., Thesis, Department of Physics, Kansas State University
(2009)
[13] http://www.cern.ch/
[14] http://lhc.web.cern.ch/lhc/LHC_Experiments.htm
[15] http://cms.web.cern.ch/cms/index.html
[16] http://atlas.web.cern.ch/Atlas/index.html
[17] http://aliceinfo.cern.ch/
[18] http://lhcb.web.cern.ch/lhcb/
[19] CMS Collaboration, CERN/LHCC 20-016 (2006), CMS TDR 8.1
[20] J. Damgov and S. Kunori, private communication
[21] Efe Yazgan, Thesis, Department of Physics, Middle East Technical University
(2007)
[22] CMS Collaboration, CERN/LHCC 2000-38 (2000), CMS TDR 6.1
[23] CMS Collaboration, CERN/LHCC 2002-26 (2002), CMS TDR 6.2
[24] https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookGeneration
[25] GEANT4 Collaboration, Nucl. Instrum. and Methods A 506. (2003)
[26] https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookSimDigi
[27] Torbjorn Sjostrand, Leif Lonnblad, Stephen Mrenna, arXiv:hep-ph/0108264
(2001)
[28] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. Polosa, JHEP/0307, 001
(2003)
[29] https://cmsdoc.cern.ch/cms/cpt/Software/html/General/.
[30] E. Meschi, T. Monteiro, C. Seez, CMS NOTE 2001/034 (2001).
[31] R. Fruhwirth and T. Speer, Nucl. Instrum. and Methods A534 (2004) 217–221
[32] S. Beauceron, K. Kaadze, Y. Maravin, V. Brigljevic, S. Morovic, CMS NOTE
2008/047 (2008)
[33] V Brigljevic, D Ferencek, S Morovic, M Planinic, S Beauceron, S Ganjour,
G Hamel de Monchenault, S Mele, A Oh, B J Huckvale, C K Mackay and P R
Hobson, J. Phys. G: Nucl. Part. Phys. 34 (2007) N269–N295
[34] S. Beauceron, S. Ganjour, G. Hamel de Monchenault, CMS NOTE 2006/055
(2006)
[35] Baffioni S et al, J. Phys. G: Nucl. Part. Phys. 34 N23–N46 (2007)
[36] http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/Configuration/CSA07-
Production/data/CSA07Higgs_Jets_Pt50up_GEN_SIM.cfg?view=log
[37] https://twiki.cern.ch/twiki/bin/view/CMS/AachenPdfUncertainties
[38] J. Ohnemus, Phys. Rev. D 51, 1068 (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊