|
1.Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42. 2.Kabsch, W. and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983. 22(12): p. 2577-637. 3.Duan, Y. and P.A. Kollman, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 1998. 282(5389): p. 740-4. 4.Snow, C.D., et al., Absolute comparison of simulated and experimental protein-folding dynamics. Nature, 2002. 420(6911): p. 102-6. 5.Ryckaert, J.-P.C., Giovanni; Berendsen, Herman J. C., Numerical Integration of the Carte-sian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. Journal of Computational Physics, 1977. 23: p. 327. 6.Berk Hess, H.B., Herman J. C. Berendsen, Johannes G. E. M. Fraaije,, LINCS: A linear con-straint solver for molecular simulations. Journal of Computational Chemistry, 1997. 18(12): p. 1463-1472. 7.D.A. Case, T.A.D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, K.M. Merz, B. Wang, D.A. Pearlman, M. Crowley, S. Brozell, V. Tsui, H. Gohlke, J. Mongan, V. Hornak, G. Cui, P. Beroza, C. Schafmeister, J.W. Caldwell, W.S. Ross, P.A. Kollman, AMBER 8. 2004. 8.Still, W.C., et al., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. Journal of the American Chemical Society, 1990. 112(16): p. 6127-6129. 9.Tseng, C.Y., C.P. Yu, and H.C. Lee, Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank. Eur Biophys J, 2009. 38(5): p. 601-11. 10.Sugita, Y. and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 1999. 314(1-2): p. 141-151. 11.Mitsutake, A., Y. Sugita, and Y. Okamoto, Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers, 2001. 60(2): p. 96-123. 12.Hukushima, K. and K. Nemoto, Exchange Monte Carlo Method and Application to Spin Glass Simulations. Journal of the Physical Society of Japan, 1996. 65(6): p. 1604. 13.Okamoto, Y., Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J Mol Graph Model, 2004. 22(5): p. 425-39. 14.Predescu, C., M. Predescu, and C.V. Ciobanu, On the efficiency of exchange in parallel tempering monte carlo simulations. J Phys Chem B, 2005. 109(9): p. 4189-96. 15.Ester, M., et al., A Density-Based Algorithm for Discovering Clusters in Large Spatial Da-tabases with Noise. Proceedings of 2nd International Conference on Knowledge Discov-ery and Data Mining (KDD-96), 1996: p. 226-231. 16.Ankerst, M., et al., OPTICS: ordering points to identify the clustering structure, in Proceedings of the 1999 ACM SIGMOD international conference on Management of data. 1999, ACM: Philadelphia, Pennsylvania, United States. p. 49-60. 17.Neidigh, J.W., R.M. Fesinmeyer, and N.H. Andersen, Designing a 20-residue protein. Na-ture Structural Biology, 2002. 9(6): p. 425-430. 18.Qiu, L.L., et al., Smaller and faster: The 20-residue Trp-cage protein folds in 4 mu s. Jour-nal of the American Chemical Society, 2002. 124(44): p. 12952-12953. 19.Snow, C.D., B. Zagrovic, and V.S. Pande, The Trp cage: folding kinetics and unfolded state topology via molecular dynamics simulations. J Am Chem Soc, 2002. 124(49): p. 14548-9. 20.Simmerling, C., B. Strockbine, and A.E. Roitberg, All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc, 2002. 124(38): p. 11258-9. 21.Pitera, J.W. and W. Swope, Understanding folding and design: replica-exchange simula-tions of "Trp-cage" miniproteins. Proc Natl Acad Sci U S A, 2003. 100(13): p. 7587-92. 22.Chowdhury, S., et al., Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution. J Mol Biol, 2003. 327(3): p. 711-7. 23.Zhou, R., Trp-cage: folding free energy landscape in explicit water. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13280-5. 24.Juraszek, J. and P.G. Bolhuis, Sampling the multiple folding mechanisms of Trp-cage in explicit solvent. Proc Natl Acad Sci U S A, 2006. 103(43): p. 15859-64. 25.Mok, K.H., et al., A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein. Nature, 2007. 447(7140): p. 106-9. 26.Yong Duan, C.W., Shibasish Chowdhury, Mathew C. Lee, Guoming Xiong, Wei Zhang, Rong Yang, Piotr Cieplak, Ray Luo, Taisung Lee, James Caldwell, Junmei Wang, Peter Kollman,, A point-charge force field for molecular mechanics simulations of proteins based on con-densed-phase quantum mechanical calculations. Journal of Computational Chemistry, 2003. 24(16): p. 1999-2012. 27.Onufriev, A., D. Bashford, and D.A. Case, Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins-Structure Function and Bioinformatics, 2004. 55(2): p. 383-394. 28.Gronenborn, A.M., et al., A novel, highly stable fold of the immunoglobulin binding do-main of streptococcal protein G. Science, 1991. 253(5020): p. 657-61. 29.Shirts, M.R. and V.S. Pande, Mathematical analysis of coupled parallel simulations. Phys Rev Lett, 2001. 86(22): p. 4983-7. 30.Shakhnovich, E.I., Theoretical studies of protein-folding thermodynamics and kinetics. Curr Opin Struct Biol, 1997. 7(1): p. 29-40. 31.Shimada, J., E.L. Kussell, and E.I. Shakhnovich, The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation. J Mol Biol, 2001. 308(1): p. 79-95. 32.Kussell, E., J. Shimada, and E.I. Shakhnovich, A structure-based method for derivation of all-atom potentials for protein folding. Proc Natl Acad Sci U S A, 2002. 99(8): p. 5343-8. 33.Shimada, J. and E.I. Shakhnovich, The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11175-80.
|