|
[1] Aalen, O. O. (1994). Effects of frailty in survival analysis. Stat. Methods Med. Res.,3, 227–2430. [2] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes:A large sample study. Annals of Statistics, 10, 1100–1120. [3] Box-Steffensmeier, J. M. and Boef., S. D. (2006). Repeated events survival models:The conditional frailty model. Statistics in Medicine, 25(20), 3518–3533. [4] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of chronic disease incidence. Biometrika, 65, 141–151. [5] Clayton, D. G. and Cuzick, J. (1985). Multivariate generalisations of the proportional hazards model. Journal of the Royal Statistical Society, A–148, 82–117. [6] Clegg, L. X., Cai, J., and Sen, P. K. (1999). A marginal mixed baseline hazards model for multivariate failure time data. Biometrics, 55, 805–812. [7] Cook, R. J. and Lawless, J. F. (2002). Analysis of repeated events. Statistical Methods in Medical Research, 11, 141–166. [8] Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, B–34, 187–200. 41 [9] Crowder, M. (1985). A multivariate distribution with weibull connections. Journal of the Royal Statistical Society, B–51, 93–107. [10] Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. Wiley, New York. [11] Gillick, M. (2001). Pinning down frailty. J. Gerontol. Ser. A-Biol. Sci. Med. Sci., 56, M134–M135. [12] Guo, G. and Rodriguez, G. (1992). Estimating a multivariate proportional hazards model for clustered data using the em algorithm. with an application to child survival in guatemala. Journal of American Statistical Association, 87, 969–976. [13] Hougaard, P. (1986a). Survival moels for heterogeneous populations derived frim stable distributions. Biometrics, 73, 671–678. [14] Hougaard, P. (1986b). A class of multivariate failure time distributions. Biometrics, 73, 387–396. [15] Huber, P. J. (1967). The behaviour of maximum ikelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221–233. [16] Huster, J. H., Brookmeyer, R., and Self, S. G. (1989). Modelling paired survival data with covariates. Biometrics, 45, 145–156. [17] Kaplan, E. L. and Meier, P. (1958). Non-parameteric estimation from incomplete observtion. Journal of American Statistical Association, 53, 457–481,562–563. [18] Kelly, P. J. and Lim, L. L. (2000). Survival analysis for recurrent event data: an application to childhood infectious diseases. Statistics in Medicine, 19, 13–33. 42 [19] Klein, J. P. (1992). Semiparametirc estimation of random e?ects using the cox model based on the em algorithm. Biometrics, 48, 798–806. [20] Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics, 37, 158–168. [21] Lee, E. W., Wei, L. J., and Amato, D. A. (1992). Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In Klein, J. P. and Goel, P. K. (eds), Survival Analysis: State of the Art. Kluwer: Dordrecht , pp. 237–247. [22] Liang, K. Y., Self, S. G., Bandeen-Roche, K. J., and Zeger, S. L. (1995). Some recent developments for regression analysis of multivariate failure time data. Lifetime Data Analysis, 1, 403–415. [23] Lin, D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13, 2233–2247. [24] Lin, D. Y. and Wei, L. J. (1989). The robust inference for the cox proportional hazard model. Journal of the American Statistical Association, 84, 1074–1078. [25] Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, B–62, 711–730. [26] MaGilchrist, C. A. and Aisbtt, C. W. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461–466. 43 [27] Nielsen, G. G., Gill, R. D., Andersen, R. K., and S⊘rensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics, 19, 25–43. [28] Oakes, D. (1992). Frailty models for multiple event times. Survival analysis: state of the art , pp. 371–379. [29] Pepe, M. S. and Cai, J. (1993). Some graphical displays and marginal regression analyses for recurrent failure times and time-dependent covariates. Journal of American Statistical Association, 88, 811–820. [30] Prentice, P. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373–379. [31] Schaubel, D. E. and Cai, J. (2005). Analysis of clustered recurrent event data with application to hospitalization rates among renal failure patients. Biostatistics, 6, 404–419. [32] Spiekerman, C. F. and Lin, D. Y. (1998). Marginal regression models for multivariate failure time data. Journal of American Statistical Association, 93, 1164–1175. [33] Therneau, T. M. and Grambsch, P. M. (2000). Modeling survival data:extending the Cox Model . Springer. [34] Vaupel, J. W., Manton, K. G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454. [35] Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of American Statistical ssociation, 84, 1065–1073. 44 [36] Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1995). Correlated individual frailty: An advantageous approach to survival analysis of bivariate data. Mathematical Population Studies, 5(2), 145–159. 45
|