跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 11:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃偉恆
研究生(外文):Wei-heng Huang
論文名稱:具有韋伯壽命零件的串聯系統之可靠度分析
論文名稱(外文):Reliability Analysis of a Series System with Weibull Lifetime Components
指導教授:樊采虹樊采虹引用關係
指導教授(外文):Tsai-Hung Fan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:59
中文關鍵詞:EM 演算法有母數拔靴法type-I 設限貝氏估計串聯系統韋伯分佈最大概似估計量可靠度函數。
外文關鍵詞:parametric bootstrap methodEM-algorithmreliability function.maximum likelihood estimatorsWeibull distributionSeries systemType-I censoringBayesian estimators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:549
  • 評分評分:
  • 下載下載:138
  • 收藏至我的研究室書目清單書目收藏:0
在串聯系統中,只要有一個零件失效,系統即無法運作。然而每個零件可能有不同的失效時間分佈,使得系統停擺的時間往往是不確定的。
本文考慮具有m個零件的串聯系統,假設每個零件之壽命具韋伯分佈且彼此獨立,若只觀察到系統失效之時間時之可靠度分析。
首先,以EM演算法求得各零件壽命分佈中參數的最大概似估計量及相關統計推論;另外並考慮以無資訊先驗分佈的
"馬可夫鏈蒙地卡羅"方法之客觀貝氏推論。 
更進一步地將上述方法,發展於 type-I 設限實驗中,另以有母數的拔靴法以估計該模型下參數最大概似估計量的標準差。
模擬結果顯示,在兩種實驗中,最大概似推論與貝氏推論都能提供準確的估計,而樣本不是太大時,無資訊先驗分佈之貝氏分析所得結果較最大概似法為佳。
A series system fails if any of its components fails. However, each component may have different life time distribution and,
in practice, the exact component responsible for the failure of the system can not often be identified. This paper considers
a life test on a series system of m components, each having a Weibull life time distribution, and when only the system failure
time is observed. The maximum likelihood estimates via EM algorithm is developed for the parameters of each component as well as
for the system reliability. Objective Bayesian inference incorporated with the Markov chain Monte Carlo method is also addressed.
Furthermore, statistical inference is developed for the Type-I censoring experiment within a prespecified time interval and
parametric bootstrap method is used to estimate the standard errors of the MLE in this case.
Simulation study carried out reveals that the Bayesian analysis with noninformative prior provides better results than the likelihood approach
in both situations at least in the case of small sample sizes.
摘要i
Abstract ii
誌謝iii
Contents iv
List of Tables vi
List of Figures vii
1. Introduction 1
1.1 Statistical Motivation and Background . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Complete Scheme 5
2.1 Model Description and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Complete observations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 EM algorithm under incomplete observations . . . . . . . . . . . . . . 10
2.2.3 Inference on functions of parameters . . . . . . . . . . . . . . . . . . 12
2.3 Bayesian Approach via Markov Chain Monte Carlo Method . . . . . . . . . . . 13
2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Simulation study I: Complete model . . . . . . . . . . . . . . . . . . 15
2.4.2 Simulation study II: Incomplete model . . . . . . . . . . . . . . . . . . 20
2.4.3 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3. Type-I Censoring Scheme 27
3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Statistical Inference under Complete Failure Observations . . . . . . . . . . . 29
3.2.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Parametric bootstrap method . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Inference on functions of parameters . . . . . . . . . . . . . . . . . . 34
3.3 Inference without Knowing the Causing Component Experiment . . . . . . . . 35
3.3.1 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Simulation study I: Complete model under Type-I censoring . . . . . . 37
3.4.2 Simulation study II: Incomplete model under Type-I censoring . . . . . 43
4. Conclusion 47
Reference 48
[1] Casella, G. and Berger, R.L. (2002). Statistical Inference, 2nd Ed. Duxbury, Pacific
Grove, CA.
[2] Cohen, A.C. (1965). Maximum likelihood estimation in the Weibull distribution
based on complete and on censored samples. Technometrics 7, 579-588.
[3] DiCiccio, T.J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science
11, 189-212.
[4] Efron, B. (1979). Bootstrap method: another look at the jacknife. Annals of Statistics
17, 1-26.
[5] Efron, B. (1981). Censored data and bootstrap. Journal of the American Statistical
Association 76, 312-319.
[6] Efron, B. (1994). Missing data, imputation and the bootstrap. Journal of the American
Statistical Association 89, 463-475.
[7] Efron, B. and Tibshirani, R.J. (1986). Bootstrap method for standard errors, confidence
intervals and other measures of statistical accuracy. Statistical Science 1,
54-75.
[8] Efron, B. and Tibshirani, R.J. (1993). An introduction to the bootstrap. New York:
Chapman and Hall.
[9] Gertsbakh, I. (2001). Reliability Theory: with Applications to Preventive Maintenance,
Springer: New York.
[10] Guess, F.M., Usher, J.S. and Hodgson, T.J. (1991). Estimating system and component
reliabilities under partial information on cause of failure. J. Stat. Plann. Inf.
29, 75-85.
[11] Harter, H.L. and Moore, A.H. (1967). Asymptotic variances and covariances of
maximum-likelihood estimators, from censored samples, of the parameters of Weibull
and Gamma populations. Technometrics 20, 171-177.
[12] Jaeckel, L. (1972). The infinitesimal jackknife. Bell Laboratories Memorandum ]MM
72-1215-11.
[13] Lemon, G.H. (1975). Maximum likelihood estimation for the three parameterWeibull
distribution based on censored samples. Technometrics 17, 247-254.
[14] Lin, D.K., Usher, J.S. and Guess, F.M. (1993). Exact maximum likelihood estimation
using masked system data. IEEE Trans. Reliab. R-42, 631-635.
[15] Louis, T.A. (1982). Finding the observed information matrix when using the EM
algorithm. J. Roy. Statist. Soc., Ser. B 44, 226-233.
[16] Miller, R.G. (1974a). The jackknife - a review. Biometrika 61, 1-15.
[17] Miller, R.G. (1974b). An unbalanced jackknife. Annals of Statistics 2, 880-891.
[18] Miyakawa, M. (1984). Analysis of incomplete data in competing risk model. IEEE
Trans. Reliab. R-33, 293-296.
[19] Nelson, W. and Meeker, W.Q. (1978). Theory for optimum accelerated censored life
test for Weibull and extreme value distributions. Technometrics 20, 171-177.
[20] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data
Analysis, John Wiley and Sons, New York.
[21] Sarhan, A.M. (2001). Reliability estimations of components from masked system life
data. Reliability Engineering and System Safety 74, 107-113.
[22] Sarhan, A.M. (2003). Estimation of system components reliabilities using masked
data. Applied Mathematics and Computation 136, 79-92.
[23] Tanner, M.A. (1993). Tools for Statistical Inference, 2nd Ed. Springer-Verlag, New
York.
[24] Usher, J.S. (1996).Weibull component reliability-prediction in the presence of masked
data. IEEE Trans. Reliab. R-45, 229-232.
[25] Usher, J.S. and Hodgson, T.J. (1988). Maximum likelihood analysis of component
reliability using masked system life-test data. IEEE Trans. Reliab. R-37, 550-555.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top