|
[1] Casella, G. and Berger, R.L. (2002). Statistical Inference, 2nd Ed. Duxbury, Pacific Grove, CA. [2] Cohen, A.C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 7, 579-588. [3] DiCiccio, T.J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science 11, 189-212. [4] Efron, B. (1979). Bootstrap method: another look at the jacknife. Annals of Statistics 17, 1-26. [5] Efron, B. (1981). Censored data and bootstrap. Journal of the American Statistical Association 76, 312-319. [6] Efron, B. (1994). Missing data, imputation and the bootstrap. Journal of the American Statistical Association 89, 463-475. [7] Efron, B. and Tibshirani, R.J. (1986). Bootstrap method for standard errors, confidence intervals and other measures of statistical accuracy. Statistical Science 1, 54-75. [8] Efron, B. and Tibshirani, R.J. (1993). An introduction to the bootstrap. New York: Chapman and Hall. [9] Gertsbakh, I. (2001). Reliability Theory: with Applications to Preventive Maintenance, Springer: New York. [10] Guess, F.M., Usher, J.S. and Hodgson, T.J. (1991). Estimating system and component reliabilities under partial information on cause of failure. J. Stat. Plann. Inf. 29, 75-85. [11] Harter, H.L. and Moore, A.H. (1967). Asymptotic variances and covariances of maximum-likelihood estimators, from censored samples, of the parameters of Weibull and Gamma populations. Technometrics 20, 171-177. [12] Jaeckel, L. (1972). The infinitesimal jackknife. Bell Laboratories Memorandum ]MM 72-1215-11. [13] Lemon, G.H. (1975). Maximum likelihood estimation for the three parameterWeibull distribution based on censored samples. Technometrics 17, 247-254. [14] Lin, D.K., Usher, J.S. and Guess, F.M. (1993). Exact maximum likelihood estimation using masked system data. IEEE Trans. Reliab. R-42, 631-635. [15] Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc., Ser. B 44, 226-233. [16] Miller, R.G. (1974a). The jackknife - a review. Biometrika 61, 1-15. [17] Miller, R.G. (1974b). An unbalanced jackknife. Annals of Statistics 2, 880-891. [18] Miyakawa, M. (1984). Analysis of incomplete data in competing risk model. IEEE Trans. Reliab. R-33, 293-296. [19] Nelson, W. and Meeker, W.Q. (1978). Theory for optimum accelerated censored life test for Weibull and extreme value distributions. Technometrics 20, 171-177. [20] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, John Wiley and Sons, New York. [21] Sarhan, A.M. (2001). Reliability estimations of components from masked system life data. Reliability Engineering and System Safety 74, 107-113. [22] Sarhan, A.M. (2003). Estimation of system components reliabilities using masked data. Applied Mathematics and Computation 136, 79-92. [23] Tanner, M.A. (1993). Tools for Statistical Inference, 2nd Ed. Springer-Verlag, New York. [24] Usher, J.S. (1996).Weibull component reliability-prediction in the presence of masked data. IEEE Trans. Reliab. R-45, 229-232. [25] Usher, J.S. and Hodgson, T.J. (1988). Maximum likelihood analysis of component reliability using masked system life-test data. IEEE Trans. Reliab. R-37, 550-555.
|