跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雯涵
研究生(外文):Wen-han Zhang
論文名稱:以聯合模型探討原發性膽汁性肝硬化
論文名稱(外文):Using Joint Model to Discuss PBC
指導教授:曾議寬曾議寬引用關係
指導教授(外文):Yi-kuan Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:聯合模型事件歷史圖
外文關鍵詞:joint modelevent history plot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
在臨床試驗或醫學研究中,普遍探討的問題是:『到底有哪些因素會影響疾病的發展 』或是 『藥物對病情的控制是否具有療效 』。
解決這樣的問題可透過存活分析得到幫助,其中Cox比例風險模型最常被用來描述存活資訊與變數間的關係以便了解上述問題。
這些影響疾病的變數常會隨時間而變動,我們稱此為長期追蹤資料。
在追蹤過程中常會因某些因素導致資料不完整或是測量時有實驗誤差,這些都將影響Cox比例風險函數中參數的估計;
在此,我們將採用隨機效應來描述變數的軌跡以解決上述問題,並以Cox比例風險函數與隨機效應所配適的聯合模型來進行實例分析,
探討D-青黴胺藥物對於原發性膽汁性肝硬化(PBC)病人的存活時間的影響以及其膽紅素值的變化情況。
我們初步地透過多種圖示法觀察,包括:事件歷史圖,等高圖以及3D平滑曲線圖。
接著再進一步地使用聯合模型所得的估計值進行探討。
最後根據這兩種方法我們得到相同的結論:第一,D-青黴胺藥物對於PBC病人的病情並沒有顯著的療效。
第二,PBC病人的膽紅素值會與風險成正比,膽紅素值越高時,風險隨之上升。
The main purpose of this thesis is to investigate the effect of D-penicillamine
and bilirubin to lifetime of Primary Biliary Cirrhosis (PBC) patients simultaneously.
Two methods are presented here, graphic techniques and
joint-modeling approach. Graphic techniques are used to do preliminary
exploring the data, which include Event history plot, Contour plot, and
3D smoothing spline surfaces. The joint modeling approach is conducted
to do statistical inferences on estimated parameters for the data. These
two methods have led to the same conclusions. In particular, the drug
D-penicillamine has no significant effect on survival. Moreover, the time
dependent covariate bilirubin can be well described through a cubic random
coefficient model and has a significant impact on patients’ lifetime.
第一章緒論1
1.1 疾病介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 模型背景介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
第二章統計方法13
2.1 圖形法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 事件歷史圖. . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 測量值的Profile 圖. . . . . . . . . . . . . . . . . . . 15
2.1.3 3D 平滑曲面圖. . . . . . . . . . . . . . . . . . . . . . 16
2.2 聯合模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 符號定義與模型介紹. . . . . . . . . . . . . . . . . . . 18
2.2.2 使用EM 演算法估計參數. . . . . . . . . . . . . . . . 21
2.2.3 估計參數之標準誤差. . . . . . . . . . . . . . . . . . . 26
第三章實例分析28
3.1 資料背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
iv
3.2 圖形法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 事件歷史圖. . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Profile 圖. . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 3D 平滑曲面圖. . . . . . . . . . . . . . . . . . . . . . 37
3.3 聯合模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
第四章結論與展望47
參考文獻52
1. Cleveland, W.S. (1979) ”Robust Locally Weighted Regression and
Smoothing Scatterplots” Journal of the American Statistical Association,
Vol.74, No.368, pp.829-836.
2. Cox, D.R. (1972) ”Regression Models and Life-Tables.” Journal of
the Royal Statistical Society. Series B(Methodological), Vol.34, No.2,
pp.187-220.
3. Dickson, E.R., Grambsch, P.M., Fleming, T.R., Fisher, L.D. and Longworthy,
N. (1989) ”Prognosis in Primary Biliary Cirrhosis: Model for
Decision Making.” Hepatology, Vol.10, No.11, 1-7
4. Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) ”Maximum Likelihood
from Imcomplete Data via EM Algorithm” Journal of the Royal
Statistical Society. Series B(Methodological), Vol.39, No.1, pp.1-38.
5. Ding, J. and Wang, J.L. (2008) ”Modeling Longitudinal Data with
Nonparametric Multiplicative Random Effects Jointly with Survival
Data.” Biometrics, 64, 546-556
6. Dubin, J.A., M¨uller, H.G. and Wang, J.L. (2001) ”Event history
52
graphs for censored survival data.” Statistics in Medicine, 20, 2951-
2964
7. Efron, B.(1979) ”Bootstrap methods: Another look at the jackknife.”
Annual Statistician, Vol.7, No.7, pp.1-26.
8. Fleming, T.R. and Harrington, D.P. (1991) ”Counting Processes and
Survival Analysis.” New York: Weiley.
9. Goldman, A.I. (1992) ”Eventcharts:Visualizing Survival and Other
Timed-Events Data.” The American Statistician, Vol.46, No.1, pp.13-
18
10. Gong, Y., Klingenberg, S.L. and Gluud, C. (2004) ”D-penicillamine for
primary biliary cirrhosis.” Cochrane Database of Systematic Reviews,
New York: Wiley.
11. Henderson, R., Diggle, P. and Dobson, A. (2000) ”Joint modelling of
longitudinal measurements and event time data.” Biostatistics, Vol.1,
No.4, pp.465-480
12. Hsieh, F., Tseng, Y.K. and Wang, J.L. (2006) ”Joint Modeling of
Survival and Longitudinal Data: Likelihood Approach Revisited.” Biometrics,
62, 1037-1043
53
13. Lee, J.J., Hess, K.R. and Dubin, J.A. (2000) ”Extensions and Applications
of Event Charts” The American Statistician, Vol.54, No.1,
pp.63-70
14. Markus, B.H., Dickson, E.R., Grambsch, P.M., Fleming, T.R., Mazzaferro,
V., Klintmalm, G.B., Wiesner, R.H., Van Thiel, D.H., and
Starzl, T.E. (1989) ”Efficiency of Liver Transplantation in Patients
With Primary Biliary Cirrhosis” New England Journal of Medicine,
Vol.320, 1709-1713
15. Murtaugh, P.A., Dickson, E.R., Van Dam, G.M., Malinchoc, M., Grambsch,
P.M., Langworthy, A.L. and Gips, C.H. (1994) ”Primary biliary
cirrhosis: prediction of short-term survival based on repeated patient
visits.” Hepatology, Vol.1 No.1, 126-134
16. Neuberger, J., Christensen, E., Portmann, B., Caballeria, J., Rodes,
J., Ranek, L., Tygstrup, N. and Williams, R.(1985) ”Double blind
controlled trial of d-penicillamine in patients with primary biliary cirrhosis.”
Gut 26,114-119
17. Silverman, B.W. (1985) ”Spline Smoothing: The Equivalant Variable
Kernel Method.” The Annals of Statistics, Vol.12, No.3, pp.898-916
54
18. Song, X., Davidian, M. and Tsiatis, A.A. (2002) ”A Semiparametric
Likelihood Approach to Joint Modeling of Longitudinal and Time-to-
Event Data.” Biometrics, 58, pp.742-753
19. Taylor, J.M.G., Cumberland, W.G. and Sy, J.P. (1994) ”A Stochastic
Model for Analysis of Longitudinal AIDS Data.” Journal of the
American Statistical Association, Vol.89, No.427, pp.727-736
20. Taylor, J.M.G., and Law, N. (1998) ”Does the Covariance Structure
Matter in Longitudinal Modelling for the Prediction of Future CD4
Counts?” Statistics in Medicine, 17, 2381-2394
21. Tseng, Y.K., Hsieh, F. and Wang, J.L. (2005) ”Joint modelling of
accelerated failure time and longitudinal data.” Biometrika, Vol.92,
No.3, pp.587-603
22. Tsiatis, A.A. and Davidian, M. (2004) ”Joint Modeling of Longitudinal
and Time-to-Event Data: An Overview.” Statistica Sinica, 14,
809-834
23. Tsiatis, A.A., DeGruttola, V. and Wulfsohn, M.S. (1995) ”Modeling
the Relationship of Survival to Longitudinal Data Measured with Error.
Applications to Survival and CD4 Counts in Patients with AIDS”
55
Journal of the American Statistical Association, Vol.90, No.429, pp.27-
37
24. Wang, Y. and Taylor, J.M.G. (2001) ”Jointly Modeling Longitudinal
and Event Time DataWith Application to Acquired Immunodeficiency
Syndrome” Journal of the American Statistical Association, Vol.96,
No.455, pp.895-905
25. Wulfsohn, M.S. and Tsiatis, A.A. (1997) ”A Joint Model for Survival
and Longitudinal DataMeasured with Error.” Biometrics, Vol.53,
No.1, pp.330-339
26. Yu, M., Law, N.J., Taylor, J.M.G. and Sandler, H.M. (2004) ”Joint
Longitudinal-Survival-Cure Models and Their Application to Prostate
Cancer.” Statistica Sinica, 14, pp.835-862
27. Zeng, D. and Cai, J. (2005) ”Asymptotic Results for Maximum Likelihood
Estimators in Joint Analysis of Repeated Measurements and
Survival Time.” The Annals of Statistics Vol.33, No.5, pp.2132-2163
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top