跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昭元
研究生(外文):Zhao-Yuan Chen
論文名稱:正弦及三角條紋結構光投影法的三維量測分析
論文名稱(外文):Analysis of 3D measurement using sinusoidal and isosceles-triangle grating projection methods
指導教授:曾定章曾定章引用關係
指導教授(外文):Din-Chang Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:結構光投影法
外文關鍵詞:structured light
相關次數:
  • 被引用被引用:12
  • 點閱點閱:2130
  • 評分評分:
  • 下載下載:262
  • 收藏至我的研究室書目清單書目收藏:2
本研究利用結構光投影法,執行太陽能電池板背面銀膠與鋁膠塗佈相對高度的三維量測。傳統結構光最常使用正弦條紋結構光投影,並搭配相位移技術以提高三維量測的解析度。在本研究中,除了正弦條紋結構光,我們也以三角條紋結構光投影,並推導三角條紋的四步相位移公式執行三維量測。我們在電腦模擬與實作中探討分析兩種結構光的特性。由於本研究使用數位投影機來投射條紋,因此我們也對CCD相機與投影機的非線性投射取像關係,實作各種校正方法;並提出以分析條紋灰階的方式建立感光分佈曲線,然後由此感光分佈曲線與理想線性感光分佈曲線的關係建立相位誤差補償表,以校正非線性投射取像造成的相位誤差。最後將兩種結構光應用在太陽能電池板背面銀膠與鋁膠塗佈的三維量測上。我們以單片太陽能電池板量測;大小為156mm × 156 mm。影像解析度640 × 480。以三角條紋量測出來的標準差為3.941 μm。以正弦條紋量測出來的標準差為3.007 μm。使用正弦條紋量測較使用三角條紋量測穩定。
In this study, we use structured light to measure Ag-Al pastes on solar cells. Sinusoidal structured light was frequently used as the coding light. In addition to sinusoidal structured light, we use isosceles-triangle structured light in this study. For sinusoidal structured light, we use phase-shifting method to obtain phase information. For triangular structured light, we propose a new triangular 4-step phase-shifting method to acquire phase data. In order to compare the characteristics of the two structured lights, we simulate several error sources associated with the data acquisition process in difference phase computational algorithms. The error sources of the error analyses include the error from : (i) the discreteness of projection light, (ii) the non-liner brightness of the projector, (iii) the quantization of captured images, and (iv) the flash effect of projective light. At last, the two structured lights and phase error compensation are applied in measuring Ag-Al pastes on solar cells. The ploy-silicon solar sell is 156mm × 156mm with image size 640 × 480. The measured standard deviation for the sinusoidal structured light is 3.007?m; the measured standard deviation for the isosceles-triangle structured light is 3.971μm. Sinusoidal structured light has high repeatability.
摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1研究背景與動機 1
1.2 系統流程 3
第二章 相關研究探討 5
2.1 使用正弦條紋搭配相位移解相位之研究 5
2.2 使用正弦條紋搭配其他解相位法之研究 7
2.3 使用其他類型條紋與其他解相位法之研究 9
2.4 相位誤差之探討與校正之研究 11
第三章 結構光投影法原理 13
3.1 數位條紋投影法原理 13
3.2 相位移演算法 15
3.3 相位展開技術 16
3.4 相位與高度之轉換 18
第四章 三角條紋四步相位移演算法 19
4.1三角條紋相位移演算法 19
4.2改良的三角四步相位移演算法 23
第五章 從誤差來源探討結構光特性與非線性投射校正 29
5.1 數位條紋投影法誤差來源 29
5.1.1 函數連續轉離散灰階造成的誤差 30
5.1.2 投影機非線性輸出造成的誤差 31
5.1.3 量化灰階造成的誤差 31
5.1.4 其他誤差來源產生的灰階跳動現象 32
5.2 利用電腦模擬誤差來源 33
5.2.1模擬函數波形連續轉離散灰階造成的誤差 33
5.2.2模擬投影機非線性輸出造成的誤差 34
5.2.3模擬量化灰階產生的誤差 38
5.2.4模擬灰階跳動產生的誤差 40
5.2.5電腦模擬之結構光比較 41
5.3 條紋投射與取像系統的非線性校正 42
5.3.1 相位補償 42
5.3.2 亮度補償 44
5.3.3 投射校正 45
5.4 校正建立之改良 46
5.5校正結果之比較 48
5.5.1感光分佈曲線建立之比較 49
5.5.2反函數求解之比較 50
5.5.3各種校正方式之比較 51
5.6結構光綜合比較 54
第六章 硬體架構與實物量測 56
6.1 太陽能電池介紹 56
6.1.1 太陽能電池發電原理 57
6.1.2 太陽能電池製程 58
6.2 硬體架構 59
6.3 影像前處理及校正建立 60
6.3.1 太陽能電池板區域的判定 61
6.3.2 擷取相位變化 63
6.3.3 相位轉換高度的K值計算 64
6.3.4校正建立 65
6.4 量測流程 65
6.5 太陽能電池板銀膠鋁膠之塗佈量測 66
6.5.1 逼近多項式的項次選擇 66
6.5.2 濾波遮罩大小的選擇 68
6.5.3太陽能電池板的三維量測與程式執行時間 69
6.6 實驗討論 75
第七章 結論及建議 77
7.1 結論 77
7.2 建議 78
參考文獻 79
[1]Bidanda, B., S. Motavalli, and K. Harding, "Reverse engineering: an evaluation of prospective non-contact technologies and application in manufacturing systems," International Journal of Computer Integrated Manufacturing, vol. 4, no.3, pp.145-156, 1991.
[2]Brophy, C. P., "Effect of intensity error correlation on the computed phase of phase-shifting interferometry," Journal of the Optical Society of America A, vol. 7, no.4, pp.537-541, 1990.
[3]Cheng, L., C. Quan, C. J. Tay, and Y. Fu, "Shape measurement using one frame projected sawtooth fringe pattern," Optics Communications, vol.246, no.4-6, pp.275-284, 2005.
[4]Fang, Q., "Three-dimensional profilometry based on coded linear-structure light with isosceles triangle teeth," Applied Optics, vol.36, no.7, pp.1615-1620, 1997.
[5]Fang, Q. and S. Zheng, "Linearly coded profilometry," Applied Optics, vol.36, no.11, pp.2401-2407, 1997.
[6]Ghiglia, D. C., G. A. Mastin, and L. A. Romero, "Cellular-automata method for phase unwrapping," Journal of the Optical Society of America A, vol.4, no.1. pp.267-280, 1987.
[7]Guo, H., H. He, and M. Chen, "Gamma correction for digital fringe projection profilometry," Applied Optics, vol.43, no.14, pp.2906-2914, 2004.
[8]Herraez, M. A., D. R. Burton, M. J. Lalor, and M. A. Gdeisat, "Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path," Applied Optics, vol.41, no.35, pp.7437-7444, 2002.
[9]Huang, P. S., F. Jin, and F. P. Chiang, "Quantitative evaluation of corrosion by a digital fringe projection technique," Optics and Lasers in Engineering, vol.31, no.5, pp.371-380, 1999.
[10]Huang, P. S., Q. Y. Hu, and F. P. Chiang, "Double three-step phase-shifting algorithm, " Applied Optics, vol.41, no.22, pp.4503-4509, 2002.
[11]Huang, S., C. Zhang, and F. P. Chiang, "High-speed 3-D shape measurement based on digital fringe projection technique," Optical Engineering, vol.42, pp.163-168, 2003.
[12]Jia, P., J. Kofman, and C. English, "Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement," Optical Engineering, vol.46, no.8, pp.083201-1-083201-9, 2007.
[13]Lilley, F., M. J. Lalor, and D. R. Burton, "Robust fringe analysis system for human body shape measurement," Optical Engineering, vol.39, no.1, pp. 187-195, 2000.
[14]Macy, W. W., "Two-dimensional fringe-pattern analysis," Applied Optics, vol.22, no.23, pp.3898-3901, 1983.
[15]Malacara. D., Optical Shop Testing, John Wiley & Sons, 2007, Ch.14
[16]Meng, L. and Q. Fang, "Linearly coded profilometry with a coding light that has isosceles triangle teeth: even-number-sample decoding method," Applied Optics, vol.38, no.31, pp.6528-6531, 1999.
[17]Pavageau, S., R. Dallier, N. Servagent, and T. Bosch, "A new algorithm for large surfaces profiling by fringe projection," Sensors and Actuators, vol.115, no.2-3, pp.178-184, 2004.
[18]Quan, C., X. Y. He, and C. F. Wang, "Shape measurement of small objects using LCD fringe projection with phase shifting," Optics Communications, vol.189, no.1-3, pp.21-29, 2001.
[19]Srinivasan, V., H. C. Liu, and M. Halioua, "Automated phase-measuring profilometry of 3-D diffuse objects," Applied Optics, vol.23, pp.3105-3108, 1984.
[20]Takeda, M., H. Ina, and S. Kobayashi, "Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry," Journal of the Optical Society of America A, vol.72, no.1, pp.156-160, 1981.
[21]Zhang , S., and P. S. Huang, "Phase error compensation for a 3-D shape measurement system based on the phase-shifting method," in Proc. of SPIE Two-and-Three-Dimensional Methods for Inspection and Metrology III, Boston, vol.6000, pp.E1-E10, 2005.
[22]陳亮嘉, 卓嘉弘, 何宣緯, "運用雙頻傅立葉頻譜轉換之動態三維形貌量測技術," 機械月刊, 台北, vol.34, no.8, pp.48-60, 2008.
[23]楊素華,蔡泰成, "太陽能電池," 科學發展月刊, 台北, vol.390, pp.50-55, 2005.
[24]楊德仁, 太陽能電池材料, 五南圖書出版股份有限公司, 台北, Ch.3, pp. 95-96, 2008.
[25]維基百科太陽能電池.
http://zh.wikipedia.org/w/index.php?title=%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0&variant=zh-tw.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top