跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳信宗
研究生(外文):Shin-tzung wu
論文名稱:太陽電熱複合系統之分析
論文名稱(外文):Analysis of photovoltaic thermal solar compound system
指導教授:吳俊諆
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:太陽能發電系統太陽能熱水系統太陽能熱收集器太陽電熱複合系統
外文關鍵詞:Photovoltaic thermal solar compound systemSolar thermal collectorSolar water heating systemSolar power system
相關次數:
  • 被引用被引用:9
  • 點閱點閱:582
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:1
相較於太陽電池製造的蓬勃發展,台灣在太陽熱能與複合電熱系統(photovoltaic/ thermal, PVT)的發展就顯得緩慢許多,所以本研究針對電熱複合系統分析,透過暫態系統模擬程序TRNSYS軟體來模擬PVT系統。
本文中介紹太陽電熱複合系統,特別對太陽電池種類、熱收集器的結構設計、系統的種類與儲熱槽的型式做介紹,並透過TRNSYS軟體來分析PVT系統的性能。本文將中壢的氣象資料匯入TRNSYS軟體中,並透過參數的設定針對PVT-Air、PVT-Water與複合拋物面收集器(compound parabolic collector, CPC)系統做模擬,透過輸出的功率、溫度與效率來了解上述三種系統在中壢運轉的情形。TRNSYS軟體模擬中壢地區夏季(2008年7月~8月)與冬季(2008年12月~2009年1月)這三種系統的表現,PVT-Air系統效率最高可達27%、PVT-Water系統總系統效率最高可達39%而低聚光倍率的CPC系統模擬的效率最高可達61%,從模擬的三個系統來看中壢地區比較適合發展低聚光倍率的CPC系統。
Comparing with booming business of manufacturing solar cell in recent years, Taiwan research on solar thermal utilization and photovoltaic/thermal (PVT) application is far less. Therefore this study is aim to study the performance of PVT system, with the help of transient analysis using TRNSYS simulation software.
This thesis first described PVT system and the structural design, various types of solar cell, thermal collector, and thermal storage. Then, the performances of PVT system were analyzed with TRNSYS. The weather data at Jhongli were imported into the TRNSYS and with adusting various parameters in the software to simulate PVT-AIR, PVT-WATER and CPC (compound parabolic collector) systems. With simulation of power output, temperature, and system efficiency, one can identify the performance of three systems that operate in Jhongli. TRNSYS software simulates two time sessions (July to August in 2008 and December in 2008 through January in 2009) for these three systems, and CPC has the highest efficiency (61%), PV-Water follow the second (39%) and PV-Air (27%) has the lowest value. Therefore, the CPC system is suitable to be implement in Jhongli area.
中文摘要 I
Abstract II
致 謝 III
目 錄 IV
圖 目 錄 VI
表 目 錄 X
符號說明 XI
第一章 緖論 1
1-1前言 1
1-2研究動機 2
1-3文獻回顧 4
1-4論文架構 5
第二章 太陽電熱複合系統 6
2-1系統簡介 6
2-1-1系統主要元件 8
2-2太陽電池種類與模組 10
2-2-1太陽電池種類 10
2-2-2太陽電池模組 14
2-3收集器的型式 15
2-3-1平板式收集器 16
2-3-2固定式複合拋物面收集器 25
2-3-3真空管式收集器 29
2-4 儲熱槽的簡介 30
第三章 系統模擬 34
3-1 TRNSYS軟體介紹 34
3-2氣象資料 36
3-2-1微型氣象站 36
3-2-2 TMY2標準氣象年 40
3-2-3 TMY2的建立 41
3-3 PVT特性分析 43
3-3-1 電能分析 43
3-3-2 熱能分析 44
3-4 模擬系統的建立 49
3-4-1 平板式PVT系統 49
3-4-2 固定式複合拋物面PVT系統 54
第四章 PVT系統模擬結果與性能分析 56
4-1 平板式PVT-Air系統模擬 56
4-1-1模式的建立 56
4-1-2 中壢地區PVT-Air系統模擬 62
4-2平板式PVT-Water系統模擬 70
4-2-1模式的建立 70
4-2-2中壢地區PVT-Water系統模擬 75
4-3 CPC系統模擬 79
4-4 模擬結果比較 83
第五章 結論與建議 85
5-1 結論 85
5-2 未來建議 85
參考文獻 87
附錄一 TMY2 標準氣象年格式 91
吳俊諆 (2008) “聚光太陽技術的研發:追蹤器與熱能應用”,台達電子與中央大學科技研究計畫結案報告。
林明獻 (2008) 太陽電池技術入門,全華出版社,台北縣。
林憲德、黃國倉 (2005) “台灣TMY2標準氣象年之研究與應用”,建築學報,第53期,79-94。
陳婉如 (2005) “有機太陽電池技術開發與實用化進展”,光連雙月刊 56期,24-27。
Aihara M., Nagai T., Matsushita J., Negishi Y., and Ohya H. (2001) “Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction,” Applied Energy, 69(3), 225-238.
Al-Ibrahim A. M. (1997) ”Optimum Selection of Direct-Coupled Photovoltaic Pumping System in Solar Domestic Hot Water System,” Ph.D. Thesis, University of Wisconsin, Madison.
Bosanac M., Sorensen B., Katic I., Sorensen H., Nielsen B., Badran J. (2003) ”Photovoltaic/Thermal solar collectors and their potential in denmark,” European Financing Partners (EFP) project final report, 1713/00-0014.
Coventry J.S. (2005) “Performance of a concentrating photovoltaic/thermal solar collector,” Solar Energy, 78, 211-222.
Chow T.T., Ji J., He W. (2007) “Photovoltaic-thermal collector system for domestic application,” J. Solar Energy Eng., 129, 205-209.
Chow T.T., Pei G., Fong K.F., Lin Z., Chan A.L.S., Ji J. (2009), “Energy and exergy analysis of photovoltaic-thermal collector,” Applied Energy, 86, 310-316.
Delta-T (2007) http://www.delta-t.co.uk/
Dubey S., Sandhu G..S., Tiwari G..N. (2009), ”Analytical expression for electrical efficiency of PV/T hybrid air collector,” Applied Energy, 86, 697-705.
Dubey S., Solanki S.C., Tiwari A. (2009), “Energy and exergy analysis of PVT air collector connected in series,” Energy and Buildings, 41, 863-870.
Green M.A., Emery K., Hishikawa Y. and Warta W. (2008) ”Solar cell efficiency tables (version 32)”, Progress in Photovoltaics: Research and Applications, 16, 435-440.
Huang B.J., Lin T. H., Hung W.C., Sun F. S. (2001) “Performance evaluation of solar photovoltaic/thermal systems,” Solar Energy, 70, 443-448.
Joshi A.S., Tiwari A. (2007) “Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector,” Renewable Energy, 32, 2223-2241.
Joshi A.S., Tiwari A., Tiwari G.N., Dincer I., Reddy B.V. (2009), “Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to glass) system,” International J. Thermal Sciences, 48, 154-164.
Kalogirou S.A. (2004) “Solar Thermal collectors and applications,” Progress in Energy and Combustion Science, 30, 231-295.
Nallusamy N., Sampath S., Velraj R. (2007) “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renewable Energy, 32(7), 1206-1227.
Nishioka K., Takamoto T., Agui T., Kaneiwa M., Yukiharu, Fuyuki T. (2006) “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic system,” Solar Energy Materials & Solar Cells, 90, 1308-1321.
Ocampo B. R., Vasquez E. R., Sanchez, Cornejo Meza R.C., Trapaga Martinez G., Garcia Rodriguez F.J., Gonzalez Hernandez J., Vorobiev Yu. V. (2007), “Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector,” Solar Energy materials & Solar Cells, 91, 1966-1971.
Othman M.Y.H., Yatim B., Sopian K., Bakar M. N. A. (2005) “Performance analysis of a double pass photovoltaic/thermal (PV/T) solar collector with CPC and fins,” Renewable Energy 30, 2005-2017.
Othman M.Y., Yaim B., Sopian K., Bakar M. N. A. (2006) “Double-pass photovoltaic thermal solar air collector with compound parabolic concentrator and fins,“ J. Energy Engineering, 132, 116-120.
Othman M.Y., Yatim B., Sopian K., Mohd. Bakar N.A. (2007) “Performance studies on a finned double-pass photovoltaic-thermal (PV/T) solar collector,” Desalination, 209, 43-49
Smeltink J.F.H. and Blakers A.W. (2006) “40 kW PV thermal solar roof mounted concentrator system,” IEEE Photovoltaic Energy Conversion World Conference 1, 636-639.
Tonui J.K., Tripanagnostopoulos Y. (2007a) “Air-cooled PV/T solar collectors with low cost performance improvements,” Solar Energy, 81, 498-511.
Tonui J.K., Tripanagnostopoulos Y. (2007b) “Improved PV/T solar collectors with heat extraction by forced or natural air circulation,” Renewable Energy, 32, 623-637.
TRNSYS (2002) http://sel.me.wisc.edu/trnsys/,民98年2月20瀏覽。
TRNSYS (2007) A transient simulation program, user’s manual, Version 16., Solar Energy Laboratory, University of Wisconsin-Madison.
Tripanagnostopoulos Y. (2007) “Aspects and improvements of hybrid photovoltaic/thermal solar energy systems,” Solar Energy, 81, 1117-1131.
Tiwari A and Sodha M.S. (2006a) “Performance evaluation of hybrid PV/thermal water/air heating system: Aparametric study,” Renewable Energy, 31, 2460-2474.
Tiwari A and Sodha M.S. (2006b) “Performance evaluation of solar PV/T system: An experimental validation,” Solar Energy, 80, 751-759.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top