|
[1]A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006. [2]H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp.709-727, Jul./Aug. 2004. [3]N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16, Mar., pp.864-866, 2004. [4]K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265–1281, July. 1999. [5]J.-W. Shi, Y.-H. Liu, and C.-W. Liu, “Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors,” IEEE/OSA Journal of Lightwave Technology, vol. 22, pp. 1583-1590, June, 2004. [6]M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-Speed Resonant-Cavity-Enhanced Silicon Photodetectors on Reflecting Silicon-On-Insulator Substrates,” IEEE Photon. Technol. Lett., vol. 14, pp. 519-521, April, 2002. [7]S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very High-Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Applications,” IEEE Photon. Technol. Lett., vol. 15, pp.1761-1763, Dec., 2003 [8]X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, pp. 2326–2328, Oct. 2004. [9]R. Sankaralingam, and P. Fay, “Drift-Enhanced Dual-Absorption PIN Photodiodes,” IEEE Photon. Technol. Lett., vol. 17, pp. 1513–1515, July. 2005. [10]F. J. Effenberger and A. M. Joshi, “Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightw. Technol., vol. 14, no. 8, pp. 1859–1864, Aug. 1996. [11]Y. Muramoto and T. Ishibashi, “InP/InGaAs pin photodiode structure maximizing bandwidth and efficiency,” Electron. Lett., vol. 39, pp. 1749–1750, Nov. 2003. [12]T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron., pp. 83–87, 1997. [13]T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys., vol. 36, pp. 6263–6268, 1997. [14]T. Furuta, H. Ito, and T. Ishibashi, “Photocurrent dynamics of uni-traveling-carrier and conventional pin-photodiodes,” Proc. Inst. Phys. Conf. Ser., no. 166, pp. 419–422, 2000. [15]T. Ishibashi, “High speed heterostructure devices,” in Semiconductors and Semimetals. San Diego, CA: Academic, 1994, vol. 41, ch. 5, p. 333. [16]E. S. Harmon, M. L. Lovejoy, M. R. Melloch, M. S. Lundstrom, D. Ritter, and R. A. Hamm, “Minority-carrier mobility enhancement in p+ InGaAs lattice matched to InP,” Appl. Phys. Lett., vol. 63, pp. 636–638,1993. [17]K. Kato, S. Hata, K. Kawano, and A. Kozen, “Design of ultrawideband, high-sensitivity p-i-n photodetectors,” IEICE Trans. Electron., vol. E76-C, pp. 214–221, 1993. [18]H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “Zero-bias high-speed and high-output-voltage operation of cascade-twin uni-travelling-carrier photodiode,” Electron. Lett., vol. 36, pp. 2034–2036, Nov. 2000. [19]K. Kato, “Ultrawide-Band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1265–1281, Jul. 1999. [20]S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1761–1763, Dec. 2003. [21]F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “A asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 845–847, Aug. 2001. [22]X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A partially depleted absorber photodiode with graded doping injection regions,” IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2326–2328, Oct. 2004. [23]Y. Muramoto and T. Ishibashi, “InP/InGaAs pin photodiode structure maximizing bandwidth and efficiency,” Electron. Lett., vol. 39, no. 24, 27, pp. 1749–1750, Nov. 2003. [24]N. Shimizu, N.Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs unitraveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz,” IEEE Photon. Technol. Lett., vol. 10, no. 3, pp. 412–414, Mar. 1998. [25]T. Ishibashi and Y. Yamauchi, “A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure,” IEEE Trans. Electron Devices, vol. 35, no. 4, pp. 401–404, Apr. 1988. [26]M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Singapore: World Scientific, 1996. [27]J.-W Pan, J.-L Shieh, J.-H Gau, and J.-I Chyi, “The study of the optical properties of In0.52(AlxGa1-x)0.48As by variable angle spectroscopic ellipsometry,” in Proc. Indium Phosphide and Related Materials (IPRM) Conf., May 1995, pp. 245–248. [28]M. Achouche, V. Magnin, J. Harari, F. Lelarge, E. Derouin, C. Jany, D. Carpentier, F. Blache, and D. Decoster, “High performance evanescent edge coupled waveguide unitraveling-carrier photodiodes for >40-Gb/s optical receivers,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 584–586, Feb. 2004. [29]Y.-S.Wu, J.-W. Shi, J.-Y.Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R. Xuan, “High performance evanescently edge coupled photodiodes with partially p-doped photoabsorption layer at 1.55-?m wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 878–880, Apr. 2005. [30]A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturizedwaveguide-integrated p-i-n photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2152–2154, Oct. 2005. [31]Y.-S. Wu, P.-H. Chiu, and J.-W. Shi, “High-speed and high-power performance of a dual-step evanescently-coupled uni-traveling-carrier photodiode at a 1.55 ?m avelength,” in Proc. OFC 2007, Anaheim, CA, Mar. 2007, Paper OThG1. [32]W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y.-J. Chan, “The monolithic integration of a wavelength-demultiplexer with evanescently-coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1433–1435, Oct. 1, 2007. [33]J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs–AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830 nm wavelength,” Appl. Phys. Lett., vol. 89, p. 053512, 2006. [34]S. Demiguel, X. Li, N. Li, H. Chen, J. C. Campbell, J. Wei, and A. Anselm, “High-responsivity high-speed and high-power partially depleted absorber waveguide photodiodes with relaxed coupling tolerances,” in Proc. OFC 2005, Anaheim, CA, Mar. 2005, Paper OFM2. [35]A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz Wireless Link Using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-Wave Signals” J. of Lightwave Technol., vol. 21, pp. 2145–2153, Oct., 2003. [36]H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005. [37]A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” J. of Lightwave Technol., vol. 24, pp. 1725–1731, April. 2006. [38]J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-Speed, High-Responsivity, and High-Power Performance of Near-Ballistic Uni-Traveling-Carrier Photodiode at 1.55-μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep., 2005. [39]P. Debie and L. Martens, “Accurate Error Correction Technique for On-Chip Lightwave Measurements of Optoelectronic Devices,” in IEEE MTT-S International Microwave Symposium Digest, San Diego, pp. 1589-1592, May, 1994. [40]Integrated Systems Engineering AG, Zurich, Switzerland, DESSIS-ISE release 7.5, 2002. [41]Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55?m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, April, 2006. [42]G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “A Time-Delay Equivalent-Circuit Model of Ultrafast p-i-n Photodiodes,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1227-1233, April, 2003. [43]K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave Photodetector Design and Measurements,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 2, pp. 622-629, Sep., 1996. [44]K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-Wave Photodetector Theory,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1310-1319, Aug., 1997. [45]H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimeter wave generation at 100GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEE Proc.-Optoelectron., vol. 150, pp. 138-142, April, 2003. [46]T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett., vol. 16, pp. 239-241, Jan., 2004. [47]J.-W. Shi, Y.-T. Li, C.-L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J.-I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength” Appl. Phys. Lett, vol. 89, pp.053512, 2006. [48]William Liu, Handbook of III-V Heterojunction Bipolar Transistors, chapter 9, A Wiley-Interscience, New York, 1998. [49]M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, 1996. [50]M. Tsuchiya, and T. Hosida, “Nonlinear Photodetection Scheme and Its System Applications to Fiber-Optic Millimeter-Wave Wireless Down-Links” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1342-1350, July, 1999. [51]E. Lach and K. Schuh, “Recent Advances in Ultrahigh Bit Rate ETDM Transmission Systems,” J. Lightwave Technol., vol. 24, pp. 4455-4467, Dec., 2006. [52]Andreas Beling, Heinz-Gunter Bach, Gebre Giorgis Mekonnen, Reinhard Kunkel, and Derlef Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Quantum Electron., vol. 13, no. 1, pp. 15-21, Jan./Feb. 2007. [53]S. R. Cho, J. Kim, K. S. Oh, S. K. Yang, J. M. Baek, D. H. Jang, T. I. Kim, and H. Jeon, “Enhanced Optical Coupling Performance in an InGaAs Photodidoe Integarted With Wet-Etched Microlens,” IEEE Photon. Technol. Lett., vol. 14, pp. 378-380, March, 2002. [54]M. Makiuchi, M. Norimatsu, C. Sakurai, K. Kondo, N. Yamamoto, and M. Yano, “Flip-Chip Planar GaInAs/InP p-i-n Photodiodes-Fabrication and Characteristics,” J. of Lightwave Technol., vol. 13, pp. 2270-2275, Nov., 1995. [55]T. Ishibashi, “Nonequilibrium Electron Transport HBTs,” IEEE Trans. On Electron Devices, vol. 48, pp. 2595-2604, Nov., 2001. [56]Andreas Beling, Heinz-Gunter Bach, Gebre Giorgis Mekonnen, Reinhard Kunkel, and Detlef Schmidt, “Miniaturized waveguide-integrated p-i-n photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photon. Technol. Lett., vol. 17, pp. 2152-2154, Oct., 2005. [57]J.-H. Seo, C.-S. Choi, W.-Y. Choi, Y.-S. Kang, Y.-D. Chung, and J. Kim “Remote Optoelectronic Frequency Down-Conversion Using 60-GHz Optical Heterodyne Signals and an Electroabsorption Modulator,” IEEE Photon. Technol. Lett., vol. 17, pp.1073-1075, May, 2005. [58]J.-Y. Kim, C.-S. Choi, W.-Y. Choi, H. Kamitsuna, M. Ida, and K. Kurishima, “Characteristics of InP-InGaAs HPT-Based Optically Injection-Locked Self-Oscillating Optoelectronic Mixers and Their Influence on Radio-Over-Fiber System Performance,” IEEE Photon. Technol. Lett., vol. 19, pp.155-157, Feb., 2007. [59]C. P. Liu, A. J. Seeds, and D. Wake, “Two-Terminal Edge-Coupled InP/InGaAs Heterojunction Phototransistor Optoelectronic Mixer,” IEEE Microwave and Guided Wave Lett., vol. 7, pp.72-74, March, 1997. [60]J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, W.-Y. Choi, “Conversion Efficiency Characteristics of Cascaded SOA-EAM Frequency Up/Down-Converters,” Int. Topical Meeting Microwave Photon., pp.107-110, Oct., 2005. [61]A. J. Seeds and B. Lenior, “Avalanche Diode Harmonic Optoelectronic Mixer,” Proc. Inst. Elect. Eng., vol. 133, pt. J, pp. 353-357, Dec., 1986. [62]H. Kamitsuna, K. Ishii, T. Shibata, K. Kurishima, and M. Ida, “A 43-Gb/s Clock and Data Recovery OEIC Integrating an InP-InGaAs HPT Oscillator with an HBT Decesion Circuit,” IEEE J. Select. Topics Quantum Electron., vol. 10, pp. 673-678, July/Aug., 2004. [63]Y.-S. Lin, M.-S. Hsu, C.-H. Wang, and C. H. Chen, "Millimeter-wave coplanar-waveguide parallel-coupled bandpass filters with lumped-element K-inverters," in 35th European Microwave Conference Proceedings, 2005, pp. 829-832. [64]Y.-S. Wu, C.-C. Chu, J.-W. Shi, J. M. Kuo and Y. C. Kao “Optoelectronic Mixer with Low Up-conversion Loss and Wide Up-conversion Bandwidth by Use of Flip-Chip Bonding Near-Ballistic Uni-Traveling-Carrier Photodiode and Coupled-Line Filter,” to be published in Proc. OFC 2008, San Diego, CA, USA, Feb., 2008, pp. JThA38. [65]S. Malyshev, and A. Chizh,“Optoelectronic mixer for radio-on-fiber systems” in Proc. Int. Microwave Conference, European pp. 107–110., Oct. 2005. [66]C. P. Liu, A. J. Seeds, Y. Betser, V. Sidorov, D. Ritter,and A. Madjar, “Two-Tone Third-Order Intermodulation Distortion Characteristics of an HBT Optoelectronic Mixer Using a Two-Laser Approach,” Int. Topical Meeting Microwave Photon., MWP ’99, vol. 1, pp. 87-90, Nov., 1999. [67]G. Gonzalez, MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design, Second Edition, Prentice Hall, 1997, Ch. 4, pp. 362-363. [68]K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, K. Ikeda, and N. Takahashi, “1.25 Gbps wireless Gb Ethernet link at 60 GHz-band,” IEEE MTT-S Int. Microwave Symp. Dig., 2003, vol. 1, pp. 373–376. [69]A. Hirata, H. Ishii, and T. Nagatsuma, “Design and Characterization of a 120-GHz Millimeter-Wave Antenna for Integrated Photonic Transmitters,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2157-2162, Nov. 2001. [70]H.-G. Bach, R. Kunkel, G. G. Mekonnen, D. Pech, T. Rosin, D. Schmidt, T. Gaertner, and R. Zhang, “Integration Potential of Waveguide-integrated Photodiodes: Self-powered Photodetectors and sub-THz pin-Antennas,” Proc. OFC 2008, San Diego, CA, USA, Feb., 2008, pp. OMK1. [71]A. S. Macedo and E. S. Sousa, “Antenna-Sector Time-Division Multiple Access for Broadband Indoor Wireless Systems,” IEEE J. on Selected Areas in Communications, vol. 16, pp. 937-952, Aug., 1998. [72]G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proceedings of IEEE, vol. 80, pp. 1748-1770, 1992. [73]N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, “A broadband planar quasi-Yagi antenna,” IEEE Trans. on Antennas and Propagation, vol. 50, pp. 1158-1160, Aug., 2002. [74]J.-W. Shi, Y.-S. Wu, and Y.-S. Lin, “Near-Ballistic Uni-Traveling-Carrier Photodiode Based V-band Optoelectronic Mixers with Internal Up-Conversion-Gain, Wide Modulation Bandwidth, and Very High Operation Current Performance,” IEEE Photon. Technol. Lett., vol. 20, pp. 939-941, June, 2008. [75]Y.-S. Wu and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes at W-Band” IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, July, 2008. [76]J. Sor, Y. Qian, and T. Itoh, “Miniature low-loss CPW periodic structures for filter applications,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 12, pp. 2336–40, Dec. 2001. [77]C.-T. Lin, P.-T. Shih, Jason Chen, W.-Q. Xue, P.-C. Peng, and Sien Chi, “Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering” IEEE Photon. Technol. Lett., vol. 20, pp. 1027-1029, Jun., 2008. [78]B. Razavi, RF Microelectronics, First Edition, Prentice Hall, 1997, Ch. 5, pp. 122-137. [79]Nakajima F., Furuta T. and Ito H. “High-power continuous-terahertz-wave generation using resonant-antennaintegrated uni-travelling-carrier photodiode”, IEEE Electron. Lett., vol. 40, pp. 1297-1298, Sep., 2004. [80]J.Winters, “On the capacity of radio communication systems with diversity in a Rayleigh fading environment,” IEEE J. Select. Areas Commun., vol. 5, pp. 871–878, June 1987. [81]G. J. Foschini, “Layered space-time architecture for wireless communication in fading environments when using multi-element antennas,” Bell Labs Tech. J., pp. 41–59, 1996. [82]E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecomm. ETT, vol. 10, no. 6, pp. 585–596, Nov. 1999. [83]P. R. Grajek, B. Schoenlinner and G. M. Rebeiz,“A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Antennas Propag. Mag., vol. 52, pp. 1257–1261, May 2004.
|