跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江佩宜
研究生(外文):Pei-Yi Chiang
論文名稱:銻砷化銦鎵基極異質接面雙載子電晶體之射極尺寸效應與歐姆接觸研究
論文名稱(外文):nGaAsSb base DHBT with low emitter size effect and low resistance ohmic contacts
指導教授:綦振瀛
指導教授(外文):Jen-Inn Chyi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:銻砷化銦鎵基極電晶體射極尺寸效應歐姆接觸電阻
外文關鍵詞:nGaAsSb base DHBTemitter size effectresistance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們實驗室於2006年提出一種以銻砷化銦鎵(InGaAsSb)為基極的異質接面雙載子電晶體,此種電晶體不但具有低導通電壓及低位移電壓,亦有優秀高頻特性。為了將此元件頻率提升至terahertz(THz),提升製程技術將元件尺寸縮至奈米線寬是必須的過程,然而此時元件的表面復合電流(surface recombination current) 與金屬/半導體接面阻值將同時增加,因而限制了縮減尺寸所帶來高頻特性提升之好處。本論文專注於探討銻砷化銦鎵基極材料對射極尺寸效應(emitter size effect)與其歐姆接觸特性的影響。
本研究藉由製作不同射極周長/射極面積比之元件,萃取InAlAs/InGaAsSb/InGaAs 異質接面雙載子電晶體的射極周圍復合電流密度(KB,surf),證實銻砷化銦鎵材料具有低表面復合速率。使得元件在passivation前後其直流特性相似,此外,無論使用自我校準(self-aligned)或是非自我校準(non-self-aligned)的製程,元件中的KB,surf 亦無太大變異,證明銻砷化銦鎵基極元件在縮小元件時較不受射極尺寸效應影響,進而維持其電流增益。
在銻砷化銦鎵材料中,藉由提高摻雜濃度與增加銻含量,其特徵接觸電阻可低於5×10-8 ?-cm2。根據此研究顯示,銻砷化銦鎵基極異質接面電晶體擁有低基極接觸電阻及低表面復合速度,這些優越特性有助於發展THz電晶體。
A novel heterojunction bipolar transistor (HBT) with an InGaAsSb base was proposed and demonstrated by this group in 2006.This novel transistor not only has low turn-on voltage and low offset voltage but also has excellent radio-frequency performance. In order to increase the cut-off frequency to terahertz, scaling down the emitter width to one hundred nanometers or below is necessary. However, both surface recombination current and contact resistance might increase and degrade the device’s performance at these physical dimensions.. In this work, efforts are focused on studying the emitter size effect (ESE) in InGaAsSb base DHBTs and ohmic contact on p-InGaAsSb.
We extract the emitter periphery surface recombination current density (KB,surf) in the InAlAs/InGaAsSb/InGaAs double heterojunction bipolar transistor (DHBT) from the devices with different PE/AE ratio. We verified that InGaAsSb has low surface recombination velocity. Moreover, the passivation-free characteristics and the similar KB,surf in self-aligned and non-self-aligned devices confirm the superiority of InGaAsSb base HBT for aggressive scaling.
Contact resistance is one of the most important parasitic elements that determine the device performance, especially for the submicron HBTs. Low specific contact resistance (<5×10-8 ?-cm2) has been achieved on heavily Be-doped high Sb-content InGaAsSb bulk samples. This work shows that the InGaAsSb base DHBT has low contact resistance as well as low surface recombination velocity indicating that InGaAsSb base DHBT has great potential for THz devices.
中文摘要 I
英文摘要 II
圖目錄 VI
表目錄 IX
第一章 導論 1
第二章 銻砷化銦鎵基極異質接面雙載子電晶體特性分析 5
2-1 序論 5
2-2元件直流特性分析 8
2-2-1 銻含量對載子傳輸的影響 9
2-2-2 銻含量對電流增益的影響 14
2-3 結論 17
第三章 銻砷化銦鎵基極雙載子電晶體之射極尺寸效應 18
3-1 序論 18
3-2 射極周圍表面復合電流密度萃取 19
3-3 表面復合電流對銻砷化銦鎵基極元件之影響 26
3-3-1 表面復合特性 26
3-3-2 表面復合速率之計算 35
3-4製程對射極周圍表面復合電流密度的影響 37
3-4-1 基極表面披覆層對射極周圍復合電流密度的影響 37
3-4-2 自我校準技術對射極周圍表面復合電流的影響 41
3-5 低射極周圍表面復合電流密度之探討 44
3-6 結論 47
第四章 銻砷化銦鎵材料之歐姆接觸 48
4-1 序論 48
4-2 理論分析與實驗方法 50
4-2-1 傳輸線模型理論分析 50
4-2-2 實驗方法 52
4-3 銻砷化銦鎵歐姆接觸特性探討 53
4-3-1 顯影液對特徵接觸電阻的影響 53
4-3-2 摻雜濃度與特徵接觸電阻的關係 56
4-3-3 銻含量對特徵接觸電阻的影響 57
4-4 截止頻率與最大震盪頻率之分析與估算 60
4-5 結論 64
第五章 結論 65
[1]M. Feng et al., “Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistor (PHBT) Experimentally Demonstrating fT=765 GHz at 25 oC Increasing to fT=845 GHz at -55 oC,”
[2]Shu-Han Chen et al., “Low Turn-On Voltage and High-Current InP/In0.37Ga0.63As0.89Sb0.11/In0.53Ga0.47As Double Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 655-657, Jul. 2008.
[3]鄧國宏, “具銻砷化銦鎵基極之磷化銦異質接面雙載子電晶體製作與分析” 碩士論文,國立中央大學,民國97年。
[4]陳書涵, “銻砷化銦鎵之雙異質接面雙及性電晶體成長與特性分析” 博士論文,國立中央大學,民國97年
[5]陳馨媛, “具銻砷化銦鎵基極之異質接面雙載子電晶體特性與材料分析”碩士論文,國立中央大學,民國97年。
[6]W. Liu, Handbook of III-V of Heterojunction Bipolar Transistors, John Wiley and sons, 1998.
[7]Nick G. M. Tao et al., “Surface Recombination Current in ”Type-II” NpN InP-GaAsSb-InP Self-aligned DHBTs,” IEEE Electron Device Lett., vol. 52, no. 6, pp. 1061-1066, Jun. 2005.
[8]K. Y. Cheng, et al., “Ultra-High Speed Composition Graded InGaAsSb/GaAsSb DHBTs with fT = 500 GHz Grown by Gas-Source Molecular Beam Epitaxy,”Proc. IPRM, pp. 89-91, 2006.
[9]Donald A. Neamen ,Semiconductor Physics & Devices, 3nd ed. McGraw-Hill, 2002

[10]J. H. Tsai, et al., “An extremely low offset voltage AlInAs/GaInAs heterojunction-emitter bipolar transistor,” supperlattices and Microstructures., vol. 23, pp. 1297-1307, 1998.
[11]Z. Jin et al., “Surface-recombination-free InGaAs/InP HBTs and the base contact recombination,” Solid State Electron., vol. 50, pp. 1088-1091, 2008.
[12]E. Tokumitsu et al., “Reduction of Surface Recombination Current in InGaAs/InP Pseudo-Heterojunction Bipolar Transistors Using a Thin InP Passivation Layer, ” IEEE Electron Device Lett., vol.10, no. 12, pp. 585-587, Dec. 1989.
[13]M. Shur et al., Handbook Series on Semiconductor parameters, World Scientific, 1996.
[14]L. M. Fraas et al., “Fundamental Characteristization Studies of GaSb Solar Cell,” Proc. 22nd IEEE PVSC., pp. 80-84 ,1991.
[15]Jack R. Dixon ,“Photoelectromagnetic Effect in Indium Arsenide,” Physical Rev., vol. 109, no. 2, pp. 374-378, Jul. 1957.
[16]M. A. Grishin et al., “Electron structure and electron dynamics at InSb(111)2×2 semiconductor surface,” Appl. Phys. A 76, 299-302, 2003.
[17]Z. Jin et al., “Surface Recombination Mechanism in Graded-Base InGaAs-InP HBTs,” IEEE Trans Electron Devices., vol. 51, no. 6, Jun. 2004.
[18]C.R. Bolognesi et al.,“Extraction of the Average Collector Velocity in High-speed “Type-II” InP-GaAsSb-InP DHBts,” IEEE Electron Device Lett., vol. 25, n. 12, pp.769-771, Dec. 2004
[19]Kikawa T et al., “Passivation of InP-based heterostructure bipolar transistors in relation to surface Fermi level,” Japanese J Appl Phys Part 1., vol. 38, pp. 1195-1199, 1999.
[20]D. A. Humphrey et al., “High-Current-Gain Submicronmeter InGaAs/InP Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., vol.19, no. 10, pp. 524-526, 1988.
[21]C. H. Joyner et al., “Reduction of the Surface Recombination Current in InGaAs/InP Psaudo-Heterojunction Bipolar Transistors Using a Thin InP Passivation Layer ”, IEEE Electron Device Lett., vol. 10, no. 10, pp. 585-587, Dec. 1989.
[22]Hao-Hsiung Lin etal., “Super-gain AlGaAs/GaAs Heterojunction Bipolar Transistors Using an Emitter-thinning design”, Appl. Phys. Lett., vol. 47, pp. 839-841, Oct. 1985.
[23]R. Bhat et al., “Dramatic Enhancement in the Gain of a GaAs/AlGaAs Heterojunction Bipolar Transistors by Surface Chemical Passivation”, Appl. Phys. Lett., vol. 51, pp. 33-34, Jul. 1987.
[24]Mohammad Sn et al., “Suppression of Emitter Size Effect on the Current-voltage Characteristics of AlGaAs/GaAs Heterojunction Bipolar Transistors,” Appl. Phys. Lett., vol. 56, pp. 937-939, Mar. 1990.
Hsien-Chin Chiu et al, “High Linear Low-K BCB-Bridged AlGaAs/InGaAs Power HFETs”, IEEE Radio Frequency Integrated Circuits Symposium , 2002.
[25]E. Yablonovitch et al, “Nearly Ideal InP/In0.53Ga0.47As Heterojunction Regrowth on Chemically prepared In0.53Ga0.47As Surface”, Appl. Phys. Lett., vol. 60, pp.371-373, Jan. 1992.
[26]Nobuyuki Hayama et al., “Emitter Size Effect on Current Gain in Fully Self-aligned AlGaAs/GaAs HBT’s with AlGaAs Surface Passivation Layer”, IEEE Electron Device Lett., vol. 11, no. 9, pp. 388-390, Sep. 1990.
[27]H. G. Liu et al., “Emitter-Size Effects and Ultimate Scalability of InP:GaInP/GaAsSb/InP DHBTs”, IEEE Electron Device Lett., vol. 29, no. 6, pp. 546-548, Jun. 2008.
[28]Chai Wah Ng et al., “Surface Recombination in InP/InAlAs/GaAsSb/InP Double Heterojunction Bipolar Transistors,” Proc. IPRM, pp.151-153, 2007.
[29]N. G. Tao et al., “Impact of State modeling on the Characteristics of InGaAsSb/InP DHBTs,” Solid-State-Electron., vol. 51, pp.955-1001, 2007.
[30]Evan Lobisser et al., “200-nm InGaAs/InP Type I DHBT Employing a Dual-Sidewall Emitter Process Demonstrating fmax > 800 GHz and fT = 360 GHz,” Proc. IPRM, pp. 16-19, 2009.
[31]C. Gatzke et al., “In situ Raman Spectroscopy of the Selective Etching of Antimonides in GaAb/AlSb/InAs Heterostructures,” Semicond. Sci. Technol., vol. 13, pp. 399-403, 1998.
[32]Mark Rodwell et al., “Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits, ” IEEE, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top