跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳一順
研究生(外文):Yi-Shun Chen
論文名稱:流動式顆粒床過濾器之濾餅機制行為研究
論文名稱(外文):Study of cake behavior on moving granular bed filter
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-San Hsiau
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:140
中文關鍵詞:濾餅厚度煙塵濃度氣體進口速度
外文關鍵詞:cake thicknessdust concentrationfiltration superficial velocity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
在燃煤發電技術中,會產生大量的粉塵微粒、硫氧化物及氮氧化物等有害物質。粉塵微粒在進入燃氣渦輪機後,會附著在渦輪機的葉片上並造成破壞,因此燃燒後的高溫燃氣在進入燃氣渦輪機之前,必須先將大量的粉塵微粒過濾,以確保燃氣渦輪機動力系統的正常運作。流動式顆粒床過濾器淨化高溫燃氣是一項方案。顆粒床過濾的方法為利用濾材將固體與氣體分離,其基本操作原則為粉塵微粒經由高溫氣體的傳送進入顆粒床本體,並利用在燃氣通過濾材的過程中,將粉塵微粒吸附在濾材上,而乾淨氣體則被排出。流動式顆粒床過濾器的過濾機制有深層過濾模式及淺層過濾模式(濾餅模式),淺層過濾模式則建立在深層過濾模式的自由表面上。
在過去的冷性能相關實驗中,我們發現濾餅的存在對於流動式顆粒床過濾器的過濾效率有很重要的影響。因此,本篇論文的研究將針對在流動式顆粒床過濾器之濾餅過濾行為做探討。首先將設計與建構濾餅量測系統與量測方法,此系統可在不同過濾狀態下量測濾餅厚度。接著,利用此量測系統及量測方式,測量在濾餅成長下,對於系統的壓降及過濾效率的影響,以找出最佳的過濾效率操作參數,並確定系統的確能有效達到更高的過濾效率。另外,依據濾餅成長的實驗結果,進行濾餅結構的壓縮變形測試,壓縮變形測試項目以濾餅之實際過濾效率與氣體穿透濾餅的壓降隨時間變化為主,氣體進口速度、煙塵濃度與濾餅厚度都是影響因素。最後,利用三維冷模測試模型,實際通入含煙塵氣體,測試濾餅效應對於整體過濾效率的影響,並期待未來將相關成果建立及實際應用在高溫流動式顆粒床過濾系統。
A coal-fired power plant releases large amounts of pollutants, such as dust particulates, SOX and NOX. The high temperature gases contain many dust particulates and fly ashes which should be filtrated before entering gas turbine, because the dust particulates could destroy the gas turbine in a coal-fired power plant. The moving granular bed used for filtration of the hot gas is one important apparatus under development. The granular bed filter method is a gas – solid process commonly applied to remove different concentrations of fine particulates from the gas flows. The granular bed filter is based on the principle that the suspended particulates are removed by the passage of flue gas through filter granules. The clean gas exits from the outlet of the bed. Separating airborne dust in this kind of filter may take place either in the surface filtration mode (dust cake) or the deep-bed filtration mode, depending on which region in the filter that particulate deposition occurs. In the surface filtration mode, the filter media acts as a barrier, so that dust cakes tend to build up along the surface of the filter media, with relatively little dust penetrating the media itself.
From our earlier series of cold tests in granular bed filter, we found that the existence of dust cake had influence on the collection efficiency of filter system. Consequently, this thesis tries to research filtration behavior of dust cake to get better filtration performance on a moving granular bed filter. First, we will develop an on-line powder pressure-displacement measurement system and the measurement method of cake thickness. The system could be adopted under the different condition. Using this system and method, the effects of pressure drop and collection efficiency understand on cake formation and growth. The results will be used in the operation factors. The complete increase of collection efficiency must be achieved by the filter system. In addition, dust cake compressibility of fine fly ashes on a filter system was carefully investigated under well-controlled conditions and by measuring the cake thickness under different filtration conditions using an on-line powder pressure-displacement measurement system. The cake compression test includes the collection efficiency and the pressure drop of the dust cake. The filtration superficial velocity, the dust concentration and the cake thickness are important factors. According to results of the cake filtration, the test will build a 3D cold test facility and perform the cold test. In the cold test, the control factor includes the circulation rate, the concentration of the dust gases, and the material and sizes of the filter granules. The result of cold test is essentially the development of a moving granular bed filter that could be applied in a high-temperature environment. The results are expected to serve as the basis for future research
Contents
摘 要----------------------------------------------------I
Abstract-------------------------------------------------IV
List of Figures------------------------------------------IX
List of Tables-----------------------------------------XIII
Nomenclature--------------------------------------------XIV
Chapter 1 Introduction-----------------------------------1
1.1 General introduction and scope------------------------1
1.2 Structure of thesis-----------------------------------7
Chapter 2 Experiment method and apparatus----------------9
2.1 Fundamental theory------------------------------------9
2.1.1 Cake filtration-------------------------------------9
2.1.1.1 Pressure drop-------------------------------------9
2.1.1.2 Cake solidosity----------------------------------10
2.1.1.3 Specific cake resistance-------------------------11
2.1.1.4 Collection mechanisms in the cake filtration-----12
2.1.2 Cake compression-----------------------------------14
2.1.2.1 Contact model of dust particulate----------------14
2.1.2.2 Mohr-Coulomb criterion---------------------------15
2.2 Experimental apparatus and procedure in cake filtration and compression-------------------------------17
2.3 Experimental apparatus and procedure in moving granular bed filter--------------------------------------20
2.3.1 Materials and apparatus----------------------------20
2.3.2 Experimental procedure-----------------------------22
Chapter 3 Development measurement method of cake thickness by a powder pressure- displacement system------32
3.1 Measurement systems and technologies of cake
thickness------------------------------------------------32
3.1.1 Measurement systems--------------------------------32
3.1.2 Measurement technologies and operation-------------35
3.2 Tests in regular shapes of the powders---------------37
3.3 Tests in irregular shapes of the powder--------------38
Chapter 4 Cake formation and growth in cake filtration--51
4.1 Measurement results of average thickness of cake, pressure drop, and collection efficiency-----------------51
4.2 Effects of cake solidosity and specific cake
resistance-----------------------------------------------54
Chapter 5 Cake compression in cake filtration-----------70
5.1 Measurement results of Mohr-Coulomb criterion--------70
5.2 Measurement results of cake thickness, collection efficiency, and pressure drop----------------------------71
5.3 Effect of compression properties and filtration superficial velocity-------------------------------------72
5.4 Effect of normal stress and shear stress-------------76
Chapter 6 Filtration of dust particulates with a moving granular bed filter--------------------------------------89
6.1 Collection efficiency under various filtration superficial velocities-----------------------------------89
6.2 Collection efficiency under various mass flow rates of filter granules------------------------------------------92
6.3 Size distribution of dust particulate exiting the moving granular bed filter-------------------------------94
Chapter 7 Conclusion-----------------------------------106
Bibliography--------------------------------------------110
Appendix------------------------------------------------122
Aguiar, M.L., Coury, J.R., Cake formation in fabric filtration of gases, Ind. Eng. Chem. Res., 35 (1996) 3673-3679.
Al-Malack, M.H., Anderson, G.K., Formation of dynamic membranes with crossflow microfiltration, J. Membrane Sci., 112 (1996) 287-296.
Altmann, J., Ripperger, S., Particle deposition and layer formation at the crossflow microfiltration, J. Membrane Sci., 124 (1997) 119-128.
Alvin, M.A., Impact of char and ash fines on porous ceramic filter life, Fuel Process. Technol., 56 (1998) 143-168.
Atsumi, K., Akiyama, T., A study of cake filtration – Formulation of a stefan problem, J. Chem. Eng. Jpn., 8 (1975) 487-492.
Auzerais, F.M., Jackson, R., Russel, W.B., Murphy, W.F., The transient settling of stable and flocculated dispersions, J. Fluid Mech., 221 (1990) 613-639.
Bai, R., Tien, C., Further work on cake filtration analysis, Chem. eng. sci., 60 (2005) 301-313.
Bergstrom, L., Sedimentation of flocculated alumina suspensions: γ-raymeasurements and comparison with model predictions, J. Chem. Soc. Faraday Trans., 88 (1992) 3201-3211.
Bierck, B.R., Wells, S.A., Dick, R.I., Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays, J. Water Pollut. Control Fed., 60 (1988) 645-650.
Borgwardt, R.H., Durham, J.F., Factors affecting the performance of fabric filters, 60th Annual Meeting of the American Institute of Chemical Engineers, New York, 1967.
Brown, R.C., Shi, H., Colver, G., Soo, S.C., Similitude study of a moving bed granular filter, Powder Technol., 138 (2003) 201-210.
Bürger, R., Concha, F., Karlsen, K.H., Phenomenological model of filtration processes: 1. Cake formation and expression, Chem. eng. sci., 56 (2001) 4537-4553.
Chase, G.G., Unified Analysis of compressive packed beds, filter cakes, and thickeners, Sep. Sci. Technol., 27 (1992a) 1093- 1114.
Chase, G.G., Willis, M.S., Compressive cake filtration, Chem. Eng. Sci., 47 (1992b) 1373-1381.
Cheng, Y.H., Tsai, C.J., Factors influencing pressure drop through of a dust cake during filtration, Aerosol Sci. Tech., 29 (1998) 315-328.
Choi, J.H., Ha, S.J., Jang, H.J., Compression properties of dust cake of fine fly ashes from a fluidized bed coal combustor on a ceramic filter, Powder Technol., 140 (2004) 106-115.
Chou, C.S., Lo, W.F., Smid, J., Kuo, J.T., Hsiau, S.S., The Flow Patterns and Stresses on the Wall in a Symmetric Louvered-Wall Moving Granular Filter Bed, Powder Technol., 131 (2003) 166-184.
Chou, C.S., Chen, S.H., Moving granular filter bed of quartz sand with louvered-walls and flow-corrective inserts, Powder Technol., 172 (2007a) 41-49.
Chou, C.S., Lee, A.F., Yeh, C.H., Gas-Solid Flow in a Two-Dimensional Cross-Flow Moving Granular Filter Bed with a Symmetric Boundary, Part. Part. Syst. Charact., 24 (2007b) 210-222.
Cicero, D.C., Dennis, R.A., Geiling, D.W., Schmidt, D.K., Hot-gas cleanup for coal-based gas turbines, Mech. Eng., 116 (1994) 70-75.
Clift, R., Ghadiri, M., Hoffman, A.C., A critique of two models for cyclone performance, AIChE J., 37 (1991) 285-259.
Cross, J.A., Helstroom, R., Beck, R., Method for continuously monitoring the weight and tension of filter bags in a fabric filter system, Filtr. Separat., 32 (1995) 443-447.
Dennis, R., Dirgo, J.A., Comparison of laboratory and field derived K2 values for dust collected on fabric filters, Filtr. Separat., 18 (1981) 394-397.
Deslouis, C., Festy, D., Gil, O., Rius, G., Touzain, S., Tribollet, B., Characterization of calcareous deposits in artificial sea water by impedance techniques – Deposit of CaCO3 without Mg(OH)2, Electrochim. Acta, 43 (1998) 1891-1901.
Dittler, A., Gutmann, B., Lichtenberger, R., Weber, H., Kasper, G., Optical in situ measurement of dust cake thickness distributions on rigid filter media for gas cleaning, Powder Technol., 99 (1998) 177-184.
Dittler, A., Kasper, G., Simulation of operational behaviour of patchily regenerated, rigid gas cleaning filter media, Chem. Eng. Process., 38 (1999) 321-327.
Duo, W., Kirkby, N.F., Seville, J.P.K., Clift, R., Patchy cleaning of rigid gas filters: I. A probabilistic model, Chem. Eng. Sci., 52 (1997a) 141-151.
Duo, W., Seville, J.P.K., Kirkby, N.F., Buchele, H., Cheng, C.K., Patchy cleaning of rigid gas filters: II. Experiments and model validation, Chem. Eng. Sci., 52 (1997b) 153-164.
Endo, Y., Chen, D.R., Pui, D.Y.H., Effects of particle polydispersity and shape factor during dust cake loading on air filters, Powder Technol., 98 (1998) 241-249.
Ellenbecker, M.J., Leith, D., Dust removal from non-woven fabrics – Cleaning methods need to be improved, Filtr. Separat., 18 (1981) 316-320.
Ergun, S., Fluid flow through packed columns, Chem. Eng. Process., 48 (1952) 89-94.
Everaert, K., Baeyens, J., Creemers, C., Adsorption of dioxins and furans from flue gases in an entrained flow or fixed/moving bed reactor, J. Chem. Technol. Biotechnol., 78 (2003) 213-219.
Fuchs, N.A., The Mechanics of Aerosols, Revised Edition, New York, 1989.
Gaucher, C., Jaouen, P., Comiti, J., Legentilhomme, P., Determination of cake thickness and porosity during cross-flow ultrafiltration on a plane ceramic membrane surface using an electrochemical method, J. Membrane Sci., 210 (2002) 245-258.
Ghadiri, M., Seville, J.P.K., Clift, R., Fluidized-bed filtration of gases at high-temperatures, Chem. Eng. Res. Des., 71 (1993) 371-381.
Hamachi, M., Mietton-Peuchot, M., Cake thickness measurement with an optical laser sensor, Trans. IChemE, 79 (2001) 151-155.
Hamachi, M., Mietton-Peuchot, M., Analysis of deposit behavior in crossflow microfiltration by means of thickness measurement, Chem. Eng. J., 86 (2002) 251-257.
Harvey, M.A., Bridger, K., Tiller, F.M., Apparatus for studying incompressible and moderately compressible cake filtration, Filtr. Separat., 25 (1988) 28-36.
Höflinger, W., Stöcklmayer, C., Hackl, A., Model calculation of the compression behaviour of dust filter cakes, Filtr. Separat., 31 (1994) 807-811.
Horsfield, M.A., Fordham, E.J., Hall, C., Hall, L.D., H NMR imaging studies of filtration in colloidal suspensions, J. Magn. Reson., 81 (1989) 593-596.
Hsiau, S.S., Smid, J., Tsai, H.H., Kuo, J.T., Chou, C.S., Flow patterns and velocity fields of granules in dorfan impingo filters for gas cleanup, Chem. Eng. Sci., 55 (2000) 4481-4494.
Hsiau, S.S., Smid, J., Tsai, F.H., Kuo, J.T., Chou, C.S., Velocities in moving bed filters, Powder Technol., 114 (2001) 205-212.
Hsiau, S.S., Chen, Y.S., The powder pressure-displacement of on-line system for measurement, Taiwan Patent, No. I265285 (2006)
Hsiau, S.S., Smid, J., Tsai, S.A., Tzeng, C.C., Yu, Y.J., Flow of filter granules in moving beds with louvers and sublouvers, Chem. Eng. Process, 2008, in press.
Jeon, K.J., Jung, Y.W., A simulation study on the compression behavior of dust cakes, Powder Technol., 141 (2004) 1-11.
Ju, J., Chiu, M.S., Tien, C., Further work on pulse-jet fabric filtration modeling, Powder Technol., 118 (2001) 79-89.
Jung, Y., Tien, C., New correlations for predicting the effect of deposition on collection efficiency and pressure drop in granular filtration, J. Aerosol Sci., 22 (1991) 187-200.
Kalinowski, W., Leith, D., Aerosol filtration by a co-current moving granular bed: Penetration mechanisms, Environ. Int., 6 (1981) 379-386.
Kamiya, H., Deguchi, K., Gotou, J., Horio, M., Increasing phenomena of pressure drop during dust removal using a rigid ceramic filter at high temperatures, Powder Technol., 118 (2001) 160-165.
Kvetoslav, R.S., Advances in aerosol filtration, Lewis Publishers, 1998.
Landman, K.A., Sirakoff, C., White, L.R., Dewatering of flocculated suspensions by pressure filtration, Phys. Fluids A, 3 (1991) 1495-1509.
Lee, S.J., Chu, C.P., Tan, R.B.H., Wang, C.H., Lee, D.J., Consolidation dewatering and centrifugal sedimentation of flocculated activated sludge, Chem. Eng. Sci., 58 (2003) 1687-1701.
Leighton, D.T., Acrivos, A., The shear-induced migration of particles in concentrated suspensions, J. Fluid Mech., 181 (1987) 415-439.
L’Hostis, E., Deslouis, C., Tribollet, B., Festy, D., Ehd and steady state measurements for characterization of transport properties in a gel layer, Electrochim. Acta, 41 (1996) 1393-1399.
Lu, W.M., Huang, Y.P., Hwang, K.J., Methods to determine the relationship between cake properties and solid compressive pressure, Sep. Purif. Technol., 13 (1998) 9-23.
Meeten, G.H., A dissection method for analyzing filter cakes, Chem. Eng. Sci., 48 (1993) 2391-2398.
Neild, A., Hutchins, D.A., Billson, D.R., Imaging using air-coupled polymer-membrane capacitive ultrasonic arrays, Ultrasonics, 42 (2004) 859-864
Neiva, A.C.B., Goldstein Jr., L., A procedure for calculating pressure drop during the build-up of dust filter cakes, Chem. Eng. Process., 42 (2003) 495-501.
Peukert, W., Löffler, F., Influence of temperature on particle separation in granular bed filters, Powder Technol., 68 (1991) 263-270.
Ramarao, B.V., Tien, C., Approximate analysis of fine-particle retention in the cake filtration of suspensions, Ind. Eng. Chem. Res., 44 (2005) 1424-1432.
Reichmann, B., Tomas, J., Expression behaviour of fine particle suspensions and the consolidated cake strength, Powder Technol., 121 (2001) 182-189.
Richter, A., Babick, F., Ripperger, S., Polydisperse particle size characterization by ultrasonic attenuation spectroscopy for systems of diverse acoustic contrast in the large particle limit, J. Acoust. Soc. Am., 118 (2005) 1394-1405.
Riesmeier, B., Kroner, K.H., Kula, M.R., Studies on secondary layer formation and its characterization during cross-flow filtration of microbial cell, J. Membrane Sci., 34 (1987) 245-266.
Riesmeier, B., Kroner, K.H., Kula, M.R., Tangential filtration of microbial suspensions: filtration resistances and model development, J. Biotechnol., 12 (1989) 153-172
Ripperger, S., Altmann, J., Crossflow microfiltration – state of the art, Sep. Purif. Technol., 26 (2002) 19-31.
Rudnick, S.N., First, M.W., Third Symposium on Fabric Filters for Particulate Collection, EPA-600/7-78-007, pp. 251-288, 1978.
Ruth, B.F., Montillon, G.H., Montonna, R.E., Studies in filtration: I: critical analysis of filtration theory, Ind. Eng. Chem. Res., 25 (1933) 76-82.
Ruth, B.F., Correlating filtration theory with industrial practice, Ind. Eng. Chem., 38 (1946) 564-571.
Ruth, B.F., Montillon, G.H., Montonna, R.E., Studies in filtration: II: fundamental axiom of constant pressure filtration. Ind. Eng. Chem. Res., 25 (1933) 153-161.
Sarra, A., Miller, A.L., Shadle, L.J., Experimentally measured shear stress in the standpipe of a circulating fluidized bed, AIChE J., 51 (2005) 1131-1143.
Saxena, S.C., Henry, R.F., Podolski, W.F., Particulate removal from high temperature, high-pressure combustion gases, Prog. Energy Combust. Sci., 11 (1985) 193-251.
Schmidt, E., Löffeler, F., Preparation of dust cakes for microscopic examination, Powder Technol., 60 (1990) 173-177.
Schmidt, E., Experimental investigations into the compression of dust cakes deposited on filter media, Filtr. Separat., 32 (1995) 789-793.
Schmidt, E., Pilz, T., Raw gas conditioning and other additional techniques for improving surface filter performance , Filtr. Separat., 33 (1996) 409-415.
Schmidt, E., Theoretical investigations into the compression of dust cakes deposited on filter media, Filtr. Separat., 34 (1997) 365-368.
Seville, J.P.K., Clift, R., Withers, C.J., Keidel, W., Rigid ceramic media for filtering hot gases, Filtr. Separat., 26 (1989) 265-271.
Sharples, S., Chilengwe, N., Performance of ventilator components for natural ventilation applications, Build. Environ., 41 (2006) 1821-1830.
Shirato, M., Aragaki, T., Ichimura, K., Ootsuji, N., Porosity variation in filter cake under constant-pressure filtration, J. Chem. Eng. Jpn., 4 (1971) 172-177.
Silva, C.R.N., Negrini, V.S., Aguiar, M.L., Coury, J.R., Influence of gas velocity on cake formation and detachment, Powder Technol., 101 (1999) 165-172.
Smid, J., Hsiau, S.S., Peng, C.Y., Lee, H.T., Moving bed filters for hot gas cleanup, Filtr. Separat., 42 (2005) 34-37.
Smid, J., Hsiau, S.S., Peng, C.Y., Lee, H.T., Hot gas cleanup: Pilot testing of moving bed filters, Filtr. Separat., 43 (2006) 21-24.
Spaite, R.H., Walsh, G.W., Effect of fabric structure on filter performance, Am. Ind. Hyg. Assoc. j., 24 (1963) 357-365.
Squires, A.M., Pfeffer, R., Panel bed filters for simultaneous removal of fly ash and sulfur dioxide, J. Air Pollut. Control Assoc., 20 (1970) 534-538.
Teoh, S.K., Tan, R.B.H., Tien, C., A new procedure for determining specific filter cake resistance from filtration data, Chem. Eng. Sci., 61 (2006a) 4957-4965.
Teoh, S.K., Tan, R.B.H., Tien, C., Analysis of cake filtration data—A critical assessment of conventional filtration theory, AIChE J., 52 (2006b) 3427-3442.
Tien, C., Teoh, S.K., Tan, R.B.H., Cake filtration analysis—the effect of the relationship between the pore liquid pressure and the cake compressive stress, Chem. Eng. Sci., 56 (2001) 5361-5369.
Tien, C., Cake filtration research-a personal view, Powder Technol., 127 (2002) 1-8.
Tiller, F.M., Yeh, C.S., Tsai, C.D., Chen, W., Generalized approach to thickening, filtration and centrifugation, 4th World Filtration Congress, 1986.
Vilker, V.L., Colton, C.K., Smith, K.A., Concentration polarization in protein ultrafiltration,” AIChE J., 27 (1981) 632-645.
Vyas, H.K., Mawson, A.J., Bennett, R.J., Marshall, A.D., A new method for estimating cake height and porosity during crossflow filtration of particulate suspensions, J. Membrane Sci., 176 (2000) 113-119.
Wandelt, B., Schmitz, P., Houi, D., Investigation of transient phenomena in crossflow microfiltration of colloidal suspensions using NMR microimaging, in: Proceedings of the 6th World Filtration Congress, pp. 601-606. Nagoya, Japan (1992).
Wakeman, R.J., A numerical solution of the differential equations describing the formation of air flow in compressible filter cakes, Trans. IChemE, 56 (1978) 258-265.
Wakeman, R.J., Visualisation of cake formation in crossflow microfiltration, Trans. IChemE, 72 (1994) 530-540.
Zevenhoven, C.A.P., Scarlett, B., Andries, J., The Filtration of PFBC combustion gas in a granular bed filter, Filtr. Sep., 29 (1992) 239-244.
Zhao, J., Wang, C.H., Lee, D.J., Tien, C., Plastic deformation in cake consolidation, J. Colloid Interf. Sci., 261 (2003a) 133–145.
Zhao, J., Wang, C.H., Lee, D.J., Tien, C., Cake consolidation in a compression–permeability cell: effect of side-wall friction, J. Colloid Interf. Sci., 262 (2003b) 60-72.
Zhao, J., Huang, J., Wu, J., Fang, Y., Wang, Y., Modeling and optimization of the moving granular bed for combined hot gas desulfurization and dust removal, Powder Technol., 180 (2008) 2-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top