[1]Hutmacher D. W., Scaffolds in tissue engineering bone and cartilage, Biomaterials, Vol. 21, pp.2529–2543, 2000.
[2]Hutmacher D. W., Zein I., Teoh S. H., et al., Design and fabrication of a 3D scaffold for tissue engineering bone, In: Agrawal C. M., Parr J. E., Lin S. T., editors., Synthetic bioabsorbable polymers for implants, STP 1396., West Conshohocken, PA, American Society for Testing and Materials, pp. 152–167, 2000.
[3]Lanza R. P., Langer R., Vacanti J., Principles of Tissue Engineering, 2nd Ed, Academic, 2000.
[4]Hutmacher D. W., Sittinger M., Risbud M. V., Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends in Biomaerial, Vol. 22, No.7, pp.354-62, July 2004.
[5]Chen V. J., Smith L. A., Ma P. X., Bone Regeneration on Computer-Designed Nano-Fibrous Scaffolds, Biomaterials, Vol. 27, pp.3973-3979, 2006.
[6]Yang, S., Leong, K. F., Du, Z., et. al., The design of scaffolds for use in tissue engineering. Part I. Traditional Factors, Tissue Engineering, Volume 7(6), pp. 679-689. 2001.
[7]許芳豪,以快速原型技術研究組織工程支架孔徑大小對細胞成長之影響,國立台灣科技大學機械工程研究所碩士論文,民95。[8]黃學惠,骨細胞支架之電腦輔助設計與製造,國立成功大學醫學工程研究所碩士論文, 民94。[9]Hutmacher D. W., Schantz T., Zein I., et al., Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modelling, Journal of Biomedical Materials Research, Vol. 55, pp.203–216, 2001.
[10]Kim S. S., Utsunomiya H., Koski J. A., et al., Survival and function of hepatocytes on a novel 3D synthetic biodegradable polymer scaffold with intrinsic network of channels, Ann. Surg., Vol. 228, pp.8–13, 1998.
[11]Xiong Z., Yan Y. N., Wang S. , et al., Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition, Scripta Materialia, Vol. 46, No. 11, pp.771-776, 2002.
[12]黃仁波,以冷凍式快速原型法製作組織工程支架,國立中央大學機械工程研究所碩士論文,民94。[13]吳瑞祥,組織工程用三維支架支製成路徑規劃,國立中央大學機械工程研究所碩士論文,民97。[14]陳彥霖,“組織工程用三維支架之電腦輔助製程設計,國立中央大學機械工程研究所碩士論文,民96。[15]Bryant F. D., Sui G., Leu M. C., A study on effects of process parameters in rapid freeze prototyping, Rapid Prototyping Journal, Vol. 9, No.1, pp.19-23, 2003.
[16]Edwards S., Mitchell W., Matthews J. , et al., Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament, AUTEX Research Journal, Vol. 4, No. 2, pp.86-94, 2004.
[17]Khalil, S. and Sun, W., Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs, J. of Materials Science and Engineering C, Vol. 27, No. 3, pp.469-478, 2007.
[18]Yaszemski M. J., Payne R. G., Hayes W. C., et al., Evolution of bone transplantation molecular, cellular and tissue strategies to engineer human bone, Biomaterials, Vol. 17, No. 2, pp.175-185, 1996.
[19]Mooney D. J., Langer R., in The Biomedical Engineering Handbook (Brozino J. D. ed.), pp.1609-1618.
[20]黃偉春等,軟骨組織工程進展,國外醫學生物醫學工程分冊第22卷第5期,民88。
[21]楊志明主編,組織工程,九州圖書文物有限公司,400-405頁,台北市,民94。
[22]King E., Cameron R. E., Effect of hydrolytic degradation on the microstructure of poly(glycolic acid): an X-ray scattering and ultraviolet spectrophotometry study of wet sample ultraviolet, J. Appl. Polym. Sci., Vol. 66, pp.1681-1690, 1997.
[23]You Y., Min B. M., Lee T. S., et al., In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide- co-glycolide), J. Appl. Sci., Vol. 95 , pp.193-200, 2005.
[24]徐 丹等,聚丙烯酸鈉增稠劑的特性及用途,河南科學,第23卷,第6期,810-812頁,民94。
[25]Yarlagadda. P. K., Chandrasekharan. M., Shyan. J. Y., Recent advances and current developments in tissue scaffolding, Biomed Mater Eng, Vol. 15, No. 3, pp.159-177, 2005.
[26]Widmer M. S., Gupta P. K., Lu L., et al., Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration, Biomaterials, Vol. 19, issue 21, pp.1945-1955, 1998.
[27]Yeong W., Chua C., Leong K. , et al., Rapid prototyping in tissue engineering:challenges and potential(Review), Trends Biotechnol, Vol. 22, No.12, pp.643-52, 2004.
[28]Hutmacher D. W., Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives, J. Biomater. Sci. Polymer Edn., Vol. 12, pp.107-124, 2001.
[29]Zein I., Hutmacher D. W., Tan K. C. , et al., Fused deposition modelling of novel scaffold architectures for tissue engineering applications, Biomaterials, Vol. l23, pp.1169–85, 2002.
[30]Landers R. and. Mülhaupt R., Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers, Macromol. Mater. Eng., Vol. 282, pp.17–21, 2000.
[31]Landers R., Hubner U., Schmelzeisen R., et al., Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering, Biomaterials, vol. 23, pp.4437–4447, 2002.
[32]Landers R., Pfister A., Hubner U., et al., Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques, Journal of Materials Science, Vol. 37, pp.3107-16, 2002.
[33]Xiong Z., Yan Y., Zhang R. , et al., Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion, Scripta Mater., Vol. 45, pp.773–779, 2001.
[34]Wang F., Shor L., Darling A., et al., Precision Extruding Deposition and Characterization of Cellular Poly- -Caprolactone Tissue Scaffold, Rapid Prototyping Journal, Vol. 10, pp.42-49, 2004.
[35]Darling A. L., Sun W., 3D Microtomographic Characterization of Precision Extruded Poly- -Caprolactone Scaffolds, Journal of Biomedical Materials Research Part B, Applied Biomaterials, Vol. 70, Issue 2, 2004.
[36]呂桓綜,組織工程精密支架之製造,國立中央大學機械工程研究所碩士論文,民91。
[37]Woodfield T.B.F., Malda J., Wijn J. de, et al., Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fibre-deposition technique, Biomaterials, Vol. 25, pp.4149-4161, 2004.
[38]Leu M. C., Zhang W., Sui G., An experimental and analytical study of ice part fabrication with rapid freeze prototyping, CIRP Annals, Vol. 49, No. 1, pp.147-150, 2000.
[39]Xiong Z., Yan Y. N., Yunyu H., et al., Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition, Mater. Lett. 57, pp. 2623–2628, 2003.
[40]Pang L., Hu Y. Y., Yan Y. N., et al., Surface modification of PLGA/β-TCP scaffold for bone tissue engineering: hybridization with collagen and apatite, Surface Coat. Tec., Vol. 201, pp.9549-9557. 2007.
[41]王 琴等,聚丙烯酸鈉低濃度時的流變特性及其影響因素,食品與發酵工業,第30卷,第1期,42-44頁,民93。