跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡榮烈
研究生(外文):Jung-Lieh Tsai
論文名稱:負折射率材料應用於抗反射與窄帶濾光片之設計
論文名稱(外文):Applications of negative refraction index materials for antireflection and narrow band pass filters.
指導教授:李正中李正中引用關係陳昇暉
指導教授(外文):Cheng-Chung LeeSheng-Hui Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:窄帶濾光片薄膜設計負折射超穎物質抗反射左手材料
外文關鍵詞:antireflectionNegative refraction indexNIMMetamaterialsthin filmsnarrow band pass filters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之研究重點為以負折射率材料(Negative refraction index materials)來設計抗反射與窄帶濾光片,研究內容包含探討負折射率材料之特性、成因與其在電磁理論上的修正,接著探討如何利用其特性應用在薄膜設計上,並利用薄膜理論中的膜矩陣及導納軌跡圖做為設計方法來設計抗反射與窄帶濾光片,最後探討以負折射率材料所設計的抗反射膜以及窄帶濾光片的特殊光學性質。
在抗反射膜的應用上,以往的光學薄膜伴隨著膜層的增多其相位會朝固定方向累加,因此光譜會隨入射角度而偏移,但是若加上負折射率膜層,則相位會成反向變化,即對整體相位而言有了補償的效果,因此在整體相位下降的情況下,薄膜設計對於波長抑或是受角度變化的影響較低,由此將原本單波長抗反射膜的V字形(V-coat)設計中的某些膜層改為負折射率材料,使此抗反射膜設計變成廣波域抗反射膜。在窄帶濾光片的應用上,以改變空間層膜堆為負折射率材料的方式設計新式窄帶濾光片,由於整體相位的改變,中心波長隨入射角度的偏移量也會跟著改變,藉由調變空間層膜堆的設計,求出偏移量與角度的關係式,可設計出不隨角度偏移的窄帶濾光片。
The research point in this paper is the designs of antireflection coatings and narrow band pass filters using negative refraction index materials (NIMs). First, the properties of NIMs and the modification of electromagnetism are discussed to illustrate how to design optical thin film filters using those properties. The thin film matrix and admittance locus methods have been applied to design antireflection coatings and narrow band pass filters. Finally, the special optical properties of antireflection coatings and narrow band pass filters with NIMs are analyzed.
Normally, the phase of optical thin film is increased when the thickness of optical thin film is increased. However, the phase of NIM is decreased as the thickness of the film is increased to affect the whole phase decreased. In other words, the whole phase is compensated. The result affects the spectra of the thin films have less sensitivity in wavelength and incident angle. If the antireflection coatings are designed with NIMs, the low reflection range is broader than without NIM and the average reflection is lower, too. Another application for NIM is to replace the spacer layer using NIM to be a new type of narrow band pass filter. As the whole phase changes, the central wavelength is different. Hence the narrow band pass filter can be designed as a wavelength-non-shift filter with incident angle based on the relationship of incident angle and central wavelength.
目錄
摘要 i
Abstract ii
致謝 iii
圖目錄 vi
第一章 緒論 1
1.1 背景 1
1.2 研究動機 4
1.3 論文導引 5
第二章 負折射率材料 6
2.1 負折射率材料的源起 6
2.2 Veselago的理論基礎 7
2.3 負折射率的定義及物理意義 10
2.4 等效介電係數與等效磁導率[44] 13
2.4.1 等效介電係數 14
2.4.2 等效磁導率 18
2.5 各種結構之負折射率材料 23
第三章 光學薄膜理論 27
3.1 基本理論[45,46] 27
3.2 膜矩陣 29
3.3 導納軌跡圖 33
第四章 薄膜設計與應用 37
4.1 理論分析 37
4.2 抗反射膜 39
4.3 窄帶濾光片 47
第五章 結論 60
5.1 結論 60
Conclusion 62
5.2 未來與展望 64
參考文獻 65
參考文獻
[1] M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147, pp.145-181, 1857.
[2] A. Lakhtakia (ed), “Selected papers on linear optical composite materials”, SPIE Optical Engineering Press, Belingham, WA, 1996.
[3] J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R Soc. Lond. 63, pp.146-152, 1898.
[4] I. V. Lindell, A. H. Sihvola, and J. Kurkijarvi, “Karl F. Lindman: The last Hertzian, and a harbinger of electromagnetic chirality,” IEEE Antennas Propag. Mag. 34, No.3, pp.24–30, 1992.
[5] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε andμ ,” Sov. Phys. Usp. 10, No.4, pp.509-514, 1968.
[6] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76 , Issue 25, pp.4773, 1996.
[7] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, Issue 11, pp.2075, 1999.
[8] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, ”Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, Issue 18, pp.4184-4187, 2000.
[9] R. A. Shelby, D. R. Smith and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, Issue 6, pp.77, 2001.
[10] S. A. Ramakrishna, “Physics of negative refraction index materials,” Rep. Prog. Phys. 68, pp.449-521, 2005.
[11] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, Issue 18, pp.3966-3369, 2000.
[12] G. W. ''t Hooft, ”Comment on "Negative refraction makes a perfect lens",” Phys. Rev. Lett. 87, Issue 24, Number 249701, 2001.
[13] J. B. Pendry, ”Comment on "Negative refraction makes a perfect lens" - Reply,” Phys. Rev. Lett. 87, Issue 24, Number 249702, 2001.
[14] S. O''Brien, J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals”, J. Phys. Condens. Matter. 14, Issue 25, pp. 6383-6394, 2002.
[15] S. O''Brien, D. McPeake, S. A. Ramakrishna, J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, Issue 24, Number 241101, 2004.
[16] S. Linden, Enkrich C, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, Issue 5700, pp. 1351-1353, 2004.
[17] Y. J. Hsu, Y. C. Huang, J. S. Lih, J. L. Chern , “Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials,” J. Appl. Phys. 96, Issue 4, pp.1979-1982, 2004.
[18] J. D. Baena, L. Jelinek, R. Marques, “Reducing losses and dispersion effects in multilayer metamaterial tunnelling devices,” New J. Phys. 7, Number 166, 2005.
[19] J. D. Baena, R. Marques, F. Medina, J. Martel, ” Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69, Issue 1, Number 014402, 2004.
[20] H. Zhao, T. J. Cui, “A double-spiral resonator structure to realize left-handed material with lower resonant frequency,” Microwave and Opt. Tech. Lett. 48, Issue 5, pp. 923-926, 2006.
[21] I. Bulu, H. Caglayan, E. Ozbay, ” Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13, Issue 25, pp.10238-10247, 2005.
[22] G. Ouyang, V. Jandhyala, ”A new element design for an axis-independent, tunable, negative-permeability artificial meta-material,” Microwave and Opt. Tech. Lett. 44, Issue 6, pp.530-533, 2005.
[23] A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, Issue 7066, pp.335-338, 2005.
[24] V. A. Podolskiy, A. K. Sarychev, V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. & Materials 11, Issue 3, pp.339-339, 2002.
[25] V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, A. V. Kildishev , “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, Issue 24, pp.3356-3358, 2005.
[26] J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, Issue 4, Number 041101, 2006.
[27] A.K. Sarychev, G. Shvets, V. M. Shalaev, “ Magnetic plasmon resonance,” Phys. Rev. E 73, Issue 3, Number 036609, Part 2, 2006.
[28] A. Alu, A. Salandrino, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 4, p.1557-1567, 2006.
[29] Q. Cheng, T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, Issue 11, Number 113104, 2006.
[30] J. B. Pendry, “A chiral route to negative refraction,” Science 306, Issue 5700, pp. 1353-1355, 2004.
[31] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden , “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, Issue 5775, pp. 892-894, 2006.
[32] G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden, “Negative-index metamaterial at 780 nm wavelength,“ Opt. Lett. 32, Issue 1, pp.53-55, 2007.
[33] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “ Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, Issue 12, pp.1800-1802, 2006.
[34] H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, “ Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94, Issue 6, Number 063901, 2005.
[35] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith , “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, Issue 5801, pp.977-980, 2006.
[36] W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics 1, Issue 4, pp.224-227, 2007.
[37] N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, Issue 5721, pp.534-537, 2005.
[38] Z. Jacob, L. V. Alekseyev, E. Narimanov, “ Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, Issue 18, pp.8247-8256, 2006.
[39] A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, Issue 7, Number 075103, 2006.
[40] E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, R. S. Williams , ”Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, Issue 17, Number 173105, 2007.
[41] B. Gralak, S. Enoch and G. Tayeb, “Anomalous Refractive Properties of Photonic Crystals,” J. Opt. Soc. Am. A 17, pp. 1012-1020, 2000.
[42] R. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic Crystal-Based Resonant Antenna with a Very High Directivity,” J. Appl. Phys. 87, pp. 603-605, 2000.
[43] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89, Number 213902, 2002.
[44] 邱國斌, 蔡定平,“超穎物質的基本概念與近來之發展,” 光學工程, 第九十五期, 25-39頁, 2006.
[45] 李正中, “薄膜光學與鍍膜技術,” 第五版, 藝軒圖書出版社, p.7-111, 2006.
[46] H. A. Macleod, “Thin-Film Optical Filters,” 2nd ed., Macmillan Publishing Company, N.Y. Adam Hilger Ltd, Bristol, 1986.
[47] C.C. Lee, S.H. Chen, “Influence of deposition parameters in the fabrication of a large area narrow band pass filter of bandwidth on subnanometer scale,” Vacuum 74, pp. 577–583, 2004.
[48] D. Cushing, “Bandpass filter for 45 degree angle with low polarization properties,” OSA, Optical Interference Coatings Conference, P.WB3, Tucson, Arizona, USA, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top