跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉金龍
研究生(外文):Chin-lung Yeh
論文名稱:延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
論文名稱(外文):Adaptive high dynamic range image fusion algorithm based on Extended Linear Exposure Characteristics
指導教授:張寶基
指導教授(外文):Pao-Chi Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程研究所碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:高動態範圍影像影像融合
外文關鍵詞:HDRhigh dymaic rangeImage fusion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
因為影像感測器的動態範圍限制,拍攝的數位影像時常與實際的視覺感受有所差異。為了讓產生的影像可以顯示實際環境的亮度分佈,產生高動態範圍(HDR) 影像的技術應該是較佳的解決方案。高動態範圍影像提供了較以往傳統數位影像更廣的動態範圍,且可以精準的重現真實景象裡的光強度分佈。
本研究提出一套調適性高動態範圍的影像融合演算法。運用影像感測器曝光特性曲線,及每張影像的曝光參數,可以將實際光強度正確的對應到數位影像資訊。透過有效的融合不同曝光條件的影像的方法,可以延伸圖像光強度的線性區間。基於保留影像資訊的原則,對影像亮度資訊作處理,以便於在影像中準確地重現真實景像中的光強度分佈,此外,影像的邊緣強度資訊也將在此處理程序被保留。
實驗結果顯示,本研究提出之演算法較現行的方式,可以達到較廣的動態範圍。不論在主觀或客觀測試上,都有更較佳的效果。在不同的拍攝環境下,本演算法產生的高動態範圍影像在較亮以及較暗區域的細節與對比皆
有較好的表現。
The photo captured by the camera is often different from what we see due to the limited dynamic range of the camera sensors. To produce an image with true luminance, the high dynamic range (HDR) image capturing technique is a good solution. It provides a wider dynamic range than the traditional techniques, and is able to re-produce the luminance with high fidelity.
This work proposes an adaptive high dynamic range image fusion algorithm. By utilizing the exposure curve characteristics of image sensors and the exposure parameters of each image, it can convert the actual luminous intensity into image data with high accuracy. This method can extend the linear range of the luminous intensity by effectively fusing images with different exposures. The luminance processing is based on the principle of preserving the image information so as to re-produce the true luminous distribution of the image. In addition, the edge information is also kept with the propose method.
The simulation results show that the proposed algorithm is able to reach wide system dynamic range. Both objective and subjective measures show superior performance compared with existing methods. With different capturing environments, it generally produces high dynamic range images with better performance of details and contrast in both bright and dark areas.
摘要..................................... I
Abstract..................................II
目錄..................................... III
附圖索引................................. V
附表索引................................. VIII
第一章緒論................................ 1
1.1 研究背景.............................. 1
1.2 研究動機.............................. 2
1.3 論文架構.............................. 2
第二章高動態範圍影像演算法與評比方式簡介.. 3
2.1 高動態範圍影像簡介.................... 3
2.2 全區高動態範圍圖像演算法.............. 4
2.3 分區高動態範圍圖像演算法.............. 6
2.4 融合影像評比標準簡介.................. 9
2.4.1 熵...................................9
2.4.2 基於影像訊息量的交互熵測量法........10
2.4.3 基於影像邊緣的交互邊緣保留量測量法..12
第三章影像感測器特性與曝光控制系統簡介... 14
3.1 多曝光提升動態的區域圖象技術......... 14
3.2 攝影曝光的加法運算系統............... 16
3.3 影像感測器簡介....................... 20
3.3.1 靈敏度..............................20
3.3.2 動態範圍............................22
3.3.3 解析度..............................24
3.3.4 電子快門............................26
3.4 函數離散值內插法..................... 27
3.4.1 拉格朗日內插法......................28
第四章調適性高動態範圍影像融合演算法..... 29
4.1 相機曝光特性函數模型................. 29
4.1.1 曝光特性函數測試實驗................29
4.1.2 相機曝光控制模型....................34
4.2 延伸曝光曲線線性特性演算法........... 35
4.2.1 曝光控制............................37
4.2.2 影像資訊擷取........................39
4.2.3 影像資訊融合........................41
第五章實驗結果與討論..................... 46
5.1 實驗參數環境......................... 46
5.2 場景最大動態範圍影像融合............. 47
5.3 固定曝光時間影像融合................. 64
第六章結論............................... 81
參考文獻................................. 82
[1] N. Barakat and T. E. Darcie, “Minimal Capture Sets for Multi Exposure Enhanced
Dynamic Range Imaging”, IEEE International Symposium on Signal Processing and
Information Technology, pp. 524-529, Aug. 2006
[2] Z. Sheng, W. Z. Shi, J. Liu, G. X. Zhu, and J. W. Tian, “Multisource Image Fusion
Method Using Support Value Transform”, IEEE Transactions on Image Processing, vol.
16, issue 7, pp. 1831-1839, Jul. 2007
[3] W. C. Kao, “Real-Time Image Fusion and Adaptive Exposure Control for Smart
Surveillance Systems”, Electronics Letters, vol. 43, issue 10, pp. 975–976, Aug. 2007
[4] W. H. Cho and K. S. Hong, “Extending Dynamic Range of Two Color Images under
Different Exposures”, Proceedings of the 17th International Conference on Pattern
Recognition, vol.4, pp.23-26, Aug. 2004
[5] Q. R. Razlighi and N. Kehtarnavaz, “Correction of Over Exposed Images Captured by
Cell Phone Cameras”, IEEE International Symposium on Consumer Electronics,
pp.1-6, Jun. 2007
[6] G. Qiu and J. Duan, “An Optimal Tone Reproduction Curve Operator for the Display of
High Dynamic Range Images”, IEEE International Symposium on Circuits and Systems,
vol. 6 pp. 6276–6279, May 2005
[7] B. R. Lim, R. H. Park, and S. Kim, “High Dynamic Range for Contrast Enhancement”,
IEEE Transactions on Consumer Electronics, vol.54, issue4, pp. 1454-1462, Nov. 2006
[8] W. C. Kao, C. C. Hsu, L. Y. Chen, C. C. Kao, and S. H. Chen , “Integrating Image
Fusion and Motion Stabilization for Capturing Still Images in High Dynamic Range
Scenes”, IEEE Tenth International Symposium on Consumer Electronics, p.p. 1-6, Jun.
2006
[9] S. Battiato, A. Castorina, and M. Mancuso, “High Dynamic Range Imaging for Digital
Still Camera: an Overview”, Journal of Electronic Imaging, vol. 12, No. 3, pp. 459-469,
Jul. 2003
[10] D. A. Kerr, “APEX-The Additive System of Photographic Exposure,” Aug. 2007
http://doug.kerr.home.att.net/pumpkin/APEX.pdf
[11] J. Y. Liang, Y. J. Qin, and Z. L. Hong, “An Auto-Exposure Algorithm for Detecting High
Contrast Lighting Conditions”, 7th International Conference of ASIC, pp. 725-728, Oct.
2007
[12] Y. Chen and R. S. Blum, “Experimental Tests of Image Fusion for Night Vision”, 8th
International Conference on Information Fusion, vol.1, pp8, Jul. 2005
[13] G. Qu, D. Zhang, and P. Yan, “Information Measure for Performance of Image Fusion”,
Electronics Letters, vol.38, issue 7, pp. 313-315, Mar. 2002
[14] C. S. Xydeas and V. Petrovic, “Objective Image Fusion Performance Measure”
Electronics Letters, vol.36, issue 4, pp. 308-309, Feb. 2000
[15] L. W. Leung, B. King, and V. Vohora, “Comparision of Image Data Fusion Techniques
using Entropy and INI”, Centre for Remote Imaging, Sensing and Processing, Nov. 2001
[16] B. R. Lim, R. H. Park, and S. Kim , “High Dynamic Range for Contrast Enhancement”,
IEEE Transactions on Consumer Electronics, vol.52, issue4, pp. 1454-1462, Nov. 2006
[17] 米本和也著, 陳榕庭.彭美桂譯, “CCD/CMOS 影像感測器之基礎與應用”, ISBN:
9572150006, 全華科技圖書股份有限公司, 初版一刷2005 年08 月
[18] R. C. Gonzalez and R. E.Woods 著, 繆紹剛譯, “數位影像處理”, ISBN: 9867594118,
台灣培生教育出版社, 初版二刷2004 年10 月
[19] 大田登著, 陳鴻興.陳君彥譯, “基礎色彩在工程”, ISBN: 9572146491, 全華科技圖
書股份有限公司, 再版一刷2004 年08 月
[20] 許昭墉編譯, “照明設計實務入門”, ISBN: 957213406, 全華科技圖書股份有限公司,
初版一刷2002 年01 月
[21] Light Source Box LSBD-111/4 Product Spec,
http://www.tsubosaka.co.jp/english/s/s26.html
[22] B. Hoefflinger, “High-Dynamic-Range (HDR) Vision”, ISBN: 9783540444329, Springer
Berlin Heidelberg, Dec. 2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top