跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昱妦
研究生(外文):Yu-Fang Lin
論文名稱:探討HOXA10藉由ERα/β調控在卵巢癌及子宮內膜異位症中之差異性表現
論文名稱(外文):Differential Regulation of HOXA10 Gene in Ovarian Cancer and Endometriosis by ERα/β
指導教授:王妙媛王妙媛引用關係
指導教授(外文):Nancy M. Wang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:84
中文關鍵詞:HOXA10ESR1ESR2PGR子宮內膜異位症卵巢癌即時定量聚合酶鏈鎖反應
外文關鍵詞:HOXA10ESR1ESR2PGRendometriosisovarian cancerreal-time PCR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  HOXA10 (Homeobox A10) 是Homeobox (Hox) 家族成員之一,其功能主要在胚胎體軸發育時基因轉錄的調控。已知HOXA10會控制胚胎發育過程中子宮的形成,而在成年女性,其子宮內膜週期性的分化過程也會受到HOXA10所調控;目前已知患有子宮內膜異位症 (endometriosis) 的病人,HOXA10在其子宮基質細胞 (stromal cells) 中的表現量會有明顯的減少,但目前並不清楚HOXA10與子宮內膜異位症的發生是否有關係。在先前的研究中發現,HOXA9、HOXA10、HOXA11會在不同亞型的上皮卵巢癌 (epithelial ovarian cancer, EOC) 中表現,也會分別誘導分化成不同亞型的上皮卵巢癌,其中HOXA10會在子宮內膜型的上皮卵巢癌中表現,然而目前並沒有定量分析HOXA10在不同亞型的上皮卵巢癌間的表現情形,因此在本實驗中希望利用real-time PCR的方式來比較HOXA10在上皮卵巢癌和子宮內膜異位症組織中的表現情況,以便了解此兩種婦科疾病在賀爾蒙調控下之HOXA10不同的表現情形。於本實驗中利用real-time PCR分析HOXA10,ESR1 (ERα),ESR2 (ERβ)和PGR (PR) 基因之表現,包括140位患有子宮內膜異位症之婦女的組織,19位沒有子宮內膜異位症之婦女組織,以及79位患有卵巢癌的婦女組織。本研究結果指出,在上皮卵巢癌中,HOXA10,ESR1和ESR2的表現相較於正常組織有1.60至2.41倍左右的增加,而PGR相較下其表現是降低的,降幅約2.80倍;然而在子宮內膜異位症病人組織中,HOXA10,ESR1和PGR的表現量相較於控制組組織是降低的情況,分別降低20.1、1.67及3.04倍,但ESR2的表現相較下增加了4.13倍。此結果顯示,在上皮卵巢癌中HOXA10的表現是較高的而在子宮內膜異位症中是較低的,與ESR1的表現情形是一致的,因而推測較高的ESR1表現會調控HOXA10表現,進而使HOXA10直接調控其下游β3-integrin的表現,因而產生此兩種不同結果的婦科疾病。另外,在文獻中指出在兩個ER中,ESR1的表現對增生的貢獻是較為主要;而在本篇研究中,我們的數據顯示在子宮內膜異位症組織中,ESR2的較高表現抑制ESR1和PGR的表現,但在卵巢癌組織中,ESR2的較高表現程度不夠高,因而不足以抑制ESR1,故造成較嚴重的增生情形。除此之外,HOXA10在卵巢癌的分化調控上扮演了一關鍵的角色,使其分化成子宮內膜亞型或漿液亞型的上皮卵巢癌。本研究為第一份評估在卵巢癌與子宮內膜異位症的發育中,荷爾蒙的調控與HOXA10的表現關係;此外也對該兩種疾病的賀爾蒙治療提供了新的觀點,並期許未來能以HOXA10對此兩婦科疾病作為一診斷的biomarker。
HOXA10 is a member of the homeobox genes family which they are transcription factors. HOXA10 is expressed in development of female reproductive tract and participates in the endometrial differentiation and may contribute to development of endometriosis and epithelial ovarian cancer (EOC). The purpose of the study is to detect and compare HOXA10 expression in the tissues of endometriosis and ovarian cancer in order to understand its role in differential regulation in these two gynaecological diseases under hormonal control. Expressions of HOXA10, ESR1 (ERα), ESR2 (ERβ) and PGR (PR) gene were quantitated in 140 patients with endometriosis and 19 women without endometriosis, and 79 ovarian cancerous tissues were determined by real-time PCR. Our data showed that expression of HOXA10, ESR1 and ESR2 were 1.60 to 2.41 folds higher and PGR was 2.80 folds lower in EOC than normal tissues. However, in endometriosis HOXA10, ESR1 and PGR were 20.1, 1.67 and 3.04 folds lower, respectively, and ESR2 was higher expression by 4.52 folds. The higher expression of HOXA10 in EOC and lower in endometriosis were coincidence with ESR1, which may support that higher expression of ESR1 manages HOXA10 to directly regulation of β3-intergin expression and then to produce the two different diseases. In addition, the expression of ESR1 is the major in the two ERs for contributes to proliferation. In this study, our data supported that overexpression of ESR2 suppress ESR1 and PGR in endometriosis, but the expression level of ESR2 was not enough for suppress ESR1 to severe proliferation. Furthermone, HOXA10 also plays a critical role for regulate the differentiation of EOC to endometrioid and mucinous subtypes. Our study was the first to establish the relationship between hormone control and the expression of HOXA10 in development of these two gynaecological diseases. These results may provide a new focus on the regulated information for hormone therapy, and provide HOXA10 as a potential biomarker for diagnosis the two diseases.
Abstract i
Abstract (Chinese) ii
Content iii

Chapter 1 Introduction 1
1.1 HOXA10 gene 1
1.1.1 Homeobox (HOX) gene 1
1.1.2 Homeobox gene and development 3
1.1.3 Homeobox gene and reproduction 4
1.1.4 HOXA10 gene 5
1.2 Sex steroid hormonal regulation of HOXA10 gene in reproductive tract 7
1.2.1 Estrogen and estrogen receptors 7
1.2.2 Progesterone and progesterone receptors 10
1.3 Ovarian cancer 11
1.3.1 Epidemiology 11
1.3.2 Surgical staging classification of ovarian cancer 12
1.3.3 Histopathology of epithelial ovarian cancer 13
1.3.4 Pathogenesis of epithelial ovarian cancer 15
1.3.5 Survival rate and ovarian cancer 17
1.3.6 HOX gene and epithelial ovarian cancer 18
1.4 Endometriosis 19
1.4.1 Epidemiology 19
1.4.2 Symptoms of endometriosis 20
1.4.3 Pathogenesis of endometriosis 20
1.4.4 Staging of endometriosis 21
1.4.5 Diagnosis of endometriosis 22
1.4.6 HOXA10 gene and endometriosis 23
1.5 Motive and specific aim 24
Chapter 2 Materials and methods 26
2.1 Experimental procedures 26
2.2 Tissue samples of ovarian cancer and endometriosis 27
2.3 Tissue RNA extraction 28
2.4 Blood RNA extraction 29
2.5 Reverse transcription 30
2.6 Real-time PCR 31
2.7 Statistical analysis 34
Chapter 3 Results 35
3.1 Patient’s clinical characteristics 35
3.1.1 Ovarian cancer 35
3.1.2 Endometriosis 36
3.2 Expression of gene profiles 38
3.2.1 Ovarian cancer 38
3.2.2 Endometriosis 39
3.3 Clinicopathological association with expression of HOXA10 in ovarian cancer 40
3.4 Clinicopathological association with expression of HOXA10 in endometriosis 43
3.5 Comparison in EOC and endometriosis 44
3.6 The profiles of gene expression in endometriotic patient during menstrual cycle 45
Chapter 4 Discussion 46
4.1 HOXA10 expression is higher in EOC but lower in endometriosis 46
4.2 Higher ESR1 expression in EOC, lower expression in endometriosis 48
4.3 The regulation of steroid hormone receptors in EOC and endometriosis 49
4.4 The expression of steroid hormone receptors in EOC and endometriosis 50
4.5 The profiles of HOXA10, ESR1 and ESR2 expression during menstrual cycle 51
Chapter 5 References 54
Chapter 6 Tables 66
Table 1. Oligonucleotide primer pairs of HOXA10, ESR1, ESR2, PGR and RPS18 for real-time PCR analysis 66
Table 2. Clinical and pathological characteristics of epithelial ovarian carcinoma patients 67
Table 3. Basic characteristic of patients with endometriosis and controls 68
Table 4. Clinical and pathological characteristics of endometriosis patients 69
Table 5. Comparison of the clinicopathologic characteristics in epithelial ovarian carcinoma patients with different expression of HOXA10 70
Table 6. Comparison of the clinicopathologic characteristics in endometriosis patients with different expression of HOXA10 71

Chapter 7 Figures 72
Figure 1. The PCR efficiency of HOXA10 primers 72
Figure 2. The PCR efficiency of ESR1 primers 73
Figure 3. The PCR efficiency of ESR2 primers 74
Figure 4. The PCR efficiency of PGR primers 75
Figure 5. The PCR efficiency of RPS18 primers 76
Figure 6. The distribution of EOC and endometriosis patients’ age 77
Figure 7. The folds of mRNA expression in patient tissues sample and ovarian cancer cell line (OV90) comparing with the normal control tissues 78
Figure 8. The profiles of the four genes expression in epithelial ovarian carcinoma patients 79
Figure 9. The profiles of the four genes expression in endometriosis patients 80
Figure 10. The expression of HOXA10 in different EOC subtypes 81
Figure 11. Comparing the mRNA expression of four genes in EOC with endometriosis 82
Figure 12. The Gene expressions in endometriotic patient’s peripheral blood during menstrual cycle 83
Chapter 8 Appendix 84
1. Daftary, G.S. & Taylor, H.S. Endocrine regulation of HOX genes. Endocr Rev 27, 331-355 (2006).
2. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191-201 (1994).
3. Taylor, H.S. The role of HOX genes in human implantation. Hum Reprod Update 6, 75-79 (2000).
4. McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283-302 (1992).
5. Eun Kwon, H. & Taylor, H.S. The role of HOX genes in human implantation. Ann N Y Acad Sci 1034, 1-18 (2004).
6. Du, H. & Taylor, H.S. Molecular regulation of mullerian development by Hox genes. Ann N Y Acad Sci 1034, 152-165 (2004).
7. Favier, B. & Dolle, P. Developmental functions of mammalian Hox genes. Mol Hum Reprod 3, 115-131 (1997).
8. Apiou, F., et al. Fine mapping of human HOX gene clusters. Cytogenet Cell Genet 73, 114-115 (1996).
9. Garcia-Fernandez, J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6, 881-892 (2005).
10. Cillo, C., Faiella, A., Cantile, M. & Boncinelli, E. Homeobox genes and cancer. Exp Cell Res 248, 1-9 (1999).
11. Cantile, M., et al. In vivo expression of the whole HOX gene network in human breast cancer. Eur J Cancer 39, 257-264 (2003).
12. Grier, D.G., et al. The pathophysiology of HOX genes and their role in cancer. J Pathol 205, 154-171 (2005).
13. Nunes, F.D., de Almeida, F.C., Tucci, R. & de Sousa, S.C. Homeobox genes: a molecular link between development and cancer. Pesqui Odontol Bras 17, 94-98 (2003).
14. Samuel, S. & Naora, H. Homeobox gene expression in cancer: insights from developmental regulation and deregulation. Eur J Cancer 41, 2428-2437 (2005).
15. Cheng, W., Liu, J., Yoshida, H., Rosen, D. & Naora, H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 11, 531-537 (2005).
16. Lane, D.B., Rutherford, T.J. & Taylor, H.S. HOXA10 expression in endometrial adenocarcinoma. Tumour Biol 25, 264-269 (2004).
17. Crickmore, M.A. & Mann, R.S. Hox control of organ size by regulation of morphogen production and mobility. Science 313, 63-68 (2006).
18. Benson, G.V., et al. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 122, 2687-2696 (1996).
19. Akin, Z.N. & Nazarali, A.J. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 25, 697-741 (2005).
20. Awgulewitsch, A. Hox in hair growth and development. Naturwissenschaften 90, 193-211 (2003).
21. McIntyre, D.C., et al. Hox patterning of the vertebrate rib cage. Development 134, 2981-2989 (2007).
22. Wellik, D.M. Hox patterning of the vertebrate axial skeleton. Dev Dyn 236, 2454-2463 (2007).
23. Zacchetti, G., Duboule, D. & Zakany, J. Hox gene function in vertebrate gut morphogenesis: the case of the caecum. Development 134, 3967-3973 (2007).
24. Daftary, G.S. & Taylor, H.S. Pleiotropic effects of Hoxa10 on the functional development of peri-implantation endometrium. Mol Reprod Dev 67, 8-14 (2004).
25. Taylor, H.S., Vanden Heuvel, G.B. & Igarashi, P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 57, 1338-1345 (1997).
26. Godbole, G.B., Modi, D.N. & Puri, C.P. Regulation of homeobox A10 expression in the primate endometrium by progesterone and embryonic stimuli. Reproduction 134, 513-523 (2007).
27. Taylor, H.S., Arici, A., Olive, D. & Igarashi, P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest 101, 1379-1384 (1998).
28. Cermik, D., Karaca, M. & Taylor, H.S. HOXA10 expression is repressed by progesterone in the myometrium: differential tissue-specific regulation of HOX gene expression in the reproductive tract. J Clin Endocrinol Metab 86, 3387-3392 (2001).
29. Gruber, C.J., Tschugguel, W., Schneeberger, C. & Huber, J.C. Production and actions of estrogens. N Engl J Med 346, 340-352 (2002).
30. Benson, G.V., Nguyen, T.H. & Maas, R.L. The expression pattern of the murine Hoxa-10 gene and the sequence recognition of its homeodomain reveal specific properties of Abdominal B-like genes. Mol Cell Biol 15, 1591-1601 (1995).
31. Bei, L., et al. Identification of a HoxA10 activation domain necessary for transcription of the gene encoding beta3 integrin during myeloid differentiation. J Biol Chem 282, 16846-16859 (2007).
32. Daftary, G.S., Troy, P.J., Bagot, C.N., Young, S.L. & Taylor, H.S. Direct regulation of beta3-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol 16, 571-579 (2002).
33. Sun, H., et al. HOXA10 suppresses p/CAF promoter activity via three consecutive TTAT units in human endometrial stromal cells. Biochem Biophys Res Commun 379, 16-21 (2009).
34. Svingen, T. & Tonissen, K.F. Hox transcription factors and their elusive mammalian gene targets. Heredity 97, 88-96 (2006).
35. Lalwani, S., Wu, H.H., Reindollar, R.H. & Gray, M.R. HOXA10 mutations in congenital absence of uterus and vagina. Fertil Steril 89, 325-330 (2008).
36. Lessey, B.A., et al. Aberrant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab 79, 643-649 (1994).
37. Lessey, B.A., Castelbaum, A.J., Sawin, S.W. & Sun, J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril 63, 535-542 (1995).
38. Jabbour, H.N., Kelly, R.W., Fraser, H.M. & Critchley, H.O. Endocrine regulation of menstruation. Endocr Rev 27, 17-46 (2006).
39. Akbas, G.E., Song, J. & Taylor, H.S. A HOXA10 estrogen response element (ERE) is differentially regulated by 17 beta-estradiol and diethylstilbestrol (DES). J Mol Biol 340, 1013-1023 (2004).
40. Martin, R., et al. Differential cell-specific modulation of HOXA10 by estrogen and specificity protein 1 response elements. J Clin Endocrinol Metab 92, 1920-1926 (2007).
41. Ruff, M., Gangloff, M., Wurtz, J.M. & Moras, D. Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Res 2, 353-359
(2000).
42. Enmark, E. & Gustafsson, J.A. Oestrogen receptors - an overview. J Intern Med 246, 133-138 (1999).
43. Enmark, E., et al. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 82, 4258-4265 (1997).
44. Emmen, J.M. & Korach, K.S. Estrogen receptor knockout mice: phenotypes in the female reproductive tract. Gynecol Endocrinol 17, 169-176 (2003).
45. Frasor, J., et al. Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) alpha activity by ERbeta in the uterus. Endocrinology 144, 3159-3166 (2003).
46. Lubahn, D.B., et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene.
Proc Natl Acad Sci U S A 90, 11162-11166 (1993).
47. Krege, J.H., et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 95, 15677-15682 (1998).
48. Couse, J.F., et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 286, 2328-2331 (1999).
49. Dupont, S., et al. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127, 4277-4291 (2000).
50. Matsuzaki, S., et al. Characterization of messenger RNA expression of estrogen receptor-alpha and -beta in patients with ovarian endometriosis. Fertil Steril 73, 1219-1225 (2000).
51. Brandenberger, A.W., et al. Oestrogen receptor (ER)-alpha and ER-beta isoforms in normal endometrial and endometriosis-derived stromal cells. Mol Hum Reprod 5, 651-655 (1999).
52. Trukhacheva, E., et al. Estrogen receptor (ER) beta regulates ERalpha expression in stromal cells derived from ovarian endometriosis. J Clin Endocrinol Metab 94, 615-622 (2009).
53. Lindgren, P.R., et al. Estrogen and progesterone receptors in ovarian epithelial tumors. Mol Cell Endocrinol 221, 97-104 (2004).
54. O'Donnell, A.J., Macleod, K.G., Burns, D.J., Smyth, J.F. & Langdon, S.P. Estrogen receptor-alpha mediates gene expression changes and growth response in ovarian cancer cells exposed to estrogen. Endocr Relat Cancer 12, 851-866
(2005).
55. Pujol, P., et al. Differential expression of estrogen receptor-alpha and -beta messenger RNAs as a potential marker of ovarian carcinogenesis. Cancer Res 58, 5367-5373 (1998).
56. Ma, L., Benson, G.V., Lim, H., Dey, S.K. & Maas, R.L. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in mullerian duct by the synthetic estrogen diethylstilbestrol (DES).
Dev Biol 197, 141-154 (1998).
57. Kastner, P., et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A
and B. EMBO J 9, 1603-1614 (1990).
58. Giudice, L.C. & Kao, L.C. Endometriosis. Lancet 364, 1789-1799 (2004).
59. Vegeto, E., et al. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol 7, 1244-1255 (1993).
60. Mote, P.A., Balleine, R.L., McGowan, E.M. & Clarke, C.L. Colocalization of progesterone receptors A and B by dual immunofluorescent histochemistry in human endometrium during the menstrual cycle. J Clin Endocrinol Metab 84,
2963-2971 (1999).
61. Mulac-Jericevic, B. & Conneely, O.M. Reproductive tissue selective actions of progesterone receptors. Reproduction 128, 139-146 (2004).
62. Akahane, T., et al. Disappearance of steroid hormone dependency during malignant transformation of ovarian clear cell cancer. Int J Gynecol Pathol 24, 369-376 (2005).
63. Attia, G.R., et al. Progesterone receptor isoform A but not B is expressed in endometriosis. J Clin Endocrinol Metab 85, 2897-2902 (2000).
64. Del Carmen, M.G., et al. Endometriosis-associated ovarian carcinoma: differential expression of vascular endothelial growth factor and estrogen/progesterone receptors. Cancer 98, 1658-1663 (2003).
65. Ito, K., Utsunomiya, H., Yaegashi, N. & Sasano, H. Biological roles of estrogen and progesterone in human endometrial carcinoma-new developments in potential endocrine therapy for endometrial cancer. Endocr J 54, 667-679 (2007).
66. Misao, R., Iwagaki, S., Fujimoto, J., Sun, W. & Tamaya, T. Dominant expression of progesterone receptor form B mRNA in ovarian endometriosis. Horm Res 52, 30-34 (1999).
67. Kaku, T., et al. Histological classification of ovarian cancer. Med Electron Microsc 36, 9-17 (2003).
68. Hannibal, C.G., Cortes, R., Engholm, G. & Kjaer, S.K. Survival of ovarian cancer patients in Denmark: excess mortality risk analysis of five-year relative survival in the period 1978-2002. Acta Obstet Gynecol Scand 87, 1353-1360 (2008).
69. Jemal, A., et al. Cancer statistics, 2008. CA Cancer J Clin 58, 71-96 (2008).
70. Main causes of death 2007. Department of Health, Executive Yuan, R.O.C. (Taiwan), Taipei, 2008
71. Colombo, N., et al. Ovarian cancer. Crit Rev Oncol Hematol 60, 159-179
(2006).
72. Benedet, J.L., Bender, H., Jones, H., 3rd, Ngan, H.Y. & Pecorelli, S. FIGO
staging classifications and clinical practice guidelines in the management of
gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J
Gynaecol Obstet 70, 209-262 (2000).
73. Heintz, A.P., et al. Carcinoma of the ovary. FIGO 6th Annual Report on the
Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet 95 Suppl
1, S161-192 (2006).
74. Odicino, F., Pecorelli, S., Zigliani, L. & Creasman, W.T. History of the FIGO
cancer staging system. Int J Gynaecol Obstet 101, 205-210 (2008).
75. Cho, K.R. & Shih, I.-M. Ovarian Cancer. Annu. Rev. Pathol. Mech. Dis. 4,
287-313 (2009).
76. Seidman, J.D., et al. The histologic type and stage distribution of ovarian
carcinomas of surface epithelial origin. Int J Gynecol Pathol 23, 41-44 (2004).
77. Auersperg, N., Wong, A.S., Choi, K.C., Kang, S.K. & Leung, P.C. Ovarian
surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22,
255-288 (2001).
78. Salehi, F., Dunfield, L., Phillips, K.P., Krewski, D. & Vanderhyden, B.C. Risk
factors for ovarian cancer: an overview with emphasis on hormonal factors. J
Toxicol Environ Health B Crit Rev 11, 301-321 (2008).
79. Lukanova, A. & Kaaks, R. Endogenous hormones and ovarian cancer:
epidemiology and current hypotheses. Cancer Epidemiol Biomarkers Prev 14,
98-107 (2005).
80. Riman, T., et al. Hormone replacement therapy and the risk of invasive
epithelial ovarian cancer in Swedish women. J Natl Cancer Inst 94, 497-504
(2002).
81. Choi, M., Fuller, C.D., Thomas, C.R., Jr. & Wang, S.J. Conditional survival in
ovarian cancer: results from the SEER dataset 1988-2001. Gynecol Oncol 109,
203-209 (2008).
82. Yamashita, T., et al. Suppression of invasive characteristics by antisense
introduction of overexpressed HOX genes in ovarian cancer cells. Int J Oncol
28, 931-938 (2006).
83. Gao, X., et al. Economic burden of endometriosis. Fertil Steril 86, 1561-1572
(2006).
84. Harada, T., et al. Apoptosis and endometriosis. Front Biosci 12, 3140-3151
(2007).
85. Hemmings, R., et al. Evaluation of risk factors associated with endometriosis.
Fertil Steril 81, 1513-1521 (2004).
86. Harel, Z. Dysmenorrhea in adolescents. Ann N Y Acad Sci 1135, 185-195
(2008).
87. Oxholm, D., Knudsen, U.B., Kryger-Baggesen, N. & Ravn, P. Postmenopausal
endometriosis. Acta Obstet Gynecol Scand, 1-7 (2007).
88. Punnonen, R., Klemi, P.J. & Nikkanen, V. Postmenopausal endometriosis. Eur J
Obstet Gynecol Reprod Biol 11, 195-200 (1980).
89. Murphy, A.A. Clinical aspects of endometriosis. Ann N Y Acad Sci 955, 1-10;
discussion 34-16, 396-406 (2002).
90. Winkel, C.A. Evaluation and management of women with endometriosis. Obstet
Gynecol 102, 397-408 (2003).
91. Von, R.C. Ueber uterusdrusen-neubildung in uterus and ovarilsarcomen. Z Ges
Aerzte Wein 37, 577-593 (1860).
92. Sampson, J. Ovarian hematomas of endometrial type (perforating hemorrhagic
cysts of the ovary) and implantation adenomas of endometrial type. Boston Med
Surg J 186, 445-473 (1922).
93. Sampson, J. Peritoneal endometriosis due to menstrual dissemination of
endometrial tissue into the peritoneal cavity. Am J Obst Gynecol 14, 442-469
(1927).
94. D'Hooghe, T.M. Clinical relevance of the baboon as a model for the study of
endometriosis. Fertil Steril 68, 613-625 (1997).
95. D'Hooghe, T.M., et al. Intrapelvic injection of menstrual endometrium causes
endometriosis in baboons (Papio cynocephalus and Papio anubis). Am J Obstet
Gynecol 173, 125-134 (1995).
96. Halme, J., Hammond, M.G., Hulka, J.F., Raj, S.G. & Talbert, L.M. Retrograde
menstruation in healthy women and in patients with endometriosis. Obstet
Gynecol 64, 151-154 (1984).
97. Liu, D.T. & Hitchcock, A. Endometriosis: its association with retrograde
menstruation, dysmenorrhoea and tubal pathology. Br J Obstet Gynaecol 93,
859-862 (1986).
98. Mungyer, G., et al. Cell of the mucous membrane of the female genital tract in
culture: a comparative study with regard to the histogenesis of endometriosis. In
Vitro Cell Dev Biol 23, 111-117 (1987).
99. Revised American Fertility Society classification of endometriosis: 1985. Fertil
Steril 43, 351-352 (1985).
100. Revised American Society for Reproductive Medicine classification of
endometriosis: 1996. Fertil Steril 67, 817-821 (1997).
101. Endometriosis: A guide for patients. (ed. Committee, P.E.C.a.P.) (the
American Society for Reproductive Medicine, 2007).
102. Elsheikh, A., Milingos, S., Loutradis, D., Kallipolitis, G. & Michalas, S.
Endometriosis and reproductive disorders. Ann N Y Acad Sci 997, 247-254
(2003).
103. Lin, S.Y., Lee, R.K., Hwu, Y.M. & Lin, M.H. Reproducibility of the revised
American Fertility Society classification of endometriosis using laparoscopy or
laparotomy. Int J Gynaecol Obstet 60, 265-269 (1998).
104. Olive, D.L. & Schwartz, L.B. Endometriosis. N Engl J Med 328, 1759-1769
(1993).
105. Amaral, V.F., et al. Positive correlation between serum and peritoneal fluid
CA-125 levels in women with pelvic endometriosis. Sao Paulo Med J 124,
223-227 (2006).
106. Abrao, M.S., et al. The use of biochemical markers in the diagnosis of pelvic
endometriosis. Hum Reprod 12, 2523-2527 (1997).
107. Browne, H. & Taylor, H. HOXA10 expression in ectopic endometrial tissue.
Fertil Steril 85, 1386-1390 (2006).
108. Gui, Y., Zhang, J., Yuan, L. & Lessey, B.A. Regulation of HOXA-10 and its
expression in normal and abnormal endometrium. Mol Hum Reprod 5, 866-873
(1999).
109. Taylor, H.S., Bagot, C., Kardana, A., Olive, D. & Arici, A. HOX gene
expression is altered in the endometrium of women with endometriosis. Hum
Reprod 14, 1328-1331 (1999).
110. Wei, Q., St Clair, J.B., Fu, T., Stratton, P. & Nieman, L.K. Reduced expression
of biomarkers associated with the implantation window in women with
endometriosis. Fertil Steril (2008).
111. Kim, J.J., et al. Altered expression of HOXA10 in endometriosis: potential role
in decidualization. Mol Hum Reprod 13, 323-332 (2007).
112. Lee, B., Du, H. & Taylor, H.S. Experimental murine endometriosis induces
DNA methylation and altered gene expression in eutopic endometrium. Biol
Reprod 80, 79-85 (2009).
113. Penna, I., Du, H., Ferriani, R. & Taylor, H.S. Calpain5 expression is decreased
in endometriosis and regulated by HOXA10 in human endometrial cells. Mol
Hum Reprod 14, 613-618 (2008).
114. Wu, H.H., Wang, N.M., Lin, C.Y. & Tsai, H.D. Genetic alterations of HOXA10
and their effect on the severity of endometriosis in a Taiwanese population.
Reprod Biomed Online 16, 416-424 (2008).
115. Bell, D.A. Origins and molecular pathology of ovarian cancer. Mod Pathol 18
Suppl 2, S19-32 (2005).
116. Kawaguchi, R., et al. Clinicopathologic features of ovarian cancer in patients
with ovarian endometrioma. J Obstet Gynaecol Res 34, 872-877 (2008).
117. Kobayashi, H., et al. Ovarian endometrioma--risks factors of ovarian cancer
development. Eur J Obstet Gynecol Reprod Biol 138, 187-193 (2008).
118. Melin, A., Sparen, P., Persson, I. & Bergqvist, A. Endometriosis and the risk of
cancer with special emphasis on ovarian cancer. Hum Reprod 21, 1237-1242
(2006).
119. Ness, R.B. Endometriosis and ovarian cancer: thoughts on shared
pathophysiology. Am J Obstet Gynecol 189, 280-294 (2003).
120. Ogawa, S., et al. Ovarian endometriosis associated with ovarian carcinoma: a
clinicopathological and immunohistochemical study. Gynecol Oncol 77,
298-304 (2000).
121. Oral, E., et al. Prevalence of endometriosis in malignant epithelial ovary
tumours. Eur J Obstet Gynecol Reprod Biol 109, 97-101 (2003).
122. Yoshida, H., Broaddus, R., Cheng, W., Xie, S. & Naora, H. Deregulation of the
HOXA10 homeobox gene in endometrial carcinoma: role in
epithelial-mesenchymal transition. Cancer Res 66, 889-897 (2006).
123. Smuc, T., et al. Disturbed estrogen and progesterone action in ovarian
endometriosis. Mol Cell Endocrinol 301, 59-64 (2009).
124. Smuc, T., et al. Expression analysis of the genes involved in estradiol and
progesterone action in human ovarian endometriosis. Gynecol Endocrinol 23,
105-111 (2007).
125. Bulun, S.E. Endometriosis. N Engl J Med 360, 268-279 (2009).
126. Fujimoto, J., Hirose, R., Sakaguchi, H. & Tamaya, T. Expression of oestrogen
receptor-alpha and -beta in ovarian endometriomata. Mol Hum Reprod 5,
742-747 (1999).
127. Matsuzaki, S., et al. Expression of estrogen receptor alpha and beta in peritoneal
and ovarian endometriosis. Fertil Steril 75, 1198-1205 (2001).
128. Cunat, S., Hoffmann, P. & Pujol, P. Estrogens and epithelial ovarian cancer.
Gynecol Oncol 94, 25-32 (2004).
129. Lazennec, G., Bresson, D., Lucas, A., Chauveau, C. & Vignon, F. ER beta
inhibits proliferation and invasion of breast cancer cells. Endocrinology 142,
4120-4130 (2001).
130. Hillier, S.G., Anderson, R.A., Williams, A.R. & Tetsuka, M. Expression of
oestrogen receptor alpha and beta in cultured human ovarian surface epithelial
cells. Mol Hum Reprod 4, 811-815 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top