跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何雲龍
研究生(外文):Yun-Lung Ho
論文名稱:一氧化氮化合物與薑黃素對老鼠黑色素腫瘤細胞毒性之探討
論文名稱(外文):Cytotoxicity of Nitric Oxide complexes and curcumin against mouse melanoma cells
指導教授:溫育德
指導教授(外文):Yu-Der Wen
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:54
中文關鍵詞:一氧化氮化合物薑黃素細胞毒性
相關次數:
  • 被引用被引用:0
  • 點閱點閱:689
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
一氧化氮分子(Nitric oxide: NO)在哺乳類生理上是非常重要的物質,它參與神經系統的訊息傳導、免疫反應、促進血管舒張等。近年來的研究顯示,一氧化氮含量的多寡會影響癌細胞生長,高劑量的NO (>1 micorM) 會導致癌細胞的死亡。然而在正常的生理狀況下,生物體內一氧化氮的含量是很微量的,所以,近年來已經發展出多種攜帶一氧化氮的化合物(NO donors),期許這些NO donors能使用在癌症治療。薑黃素(Curcumin)是一種天然的多酚類化合物,臨床上已證實有抑制腫瘤生長的效果,但因為curcumin溶解度低以及經由口服後不易被腸道吸收等缺點,大幅減低其臨床應用價值,目前的研究著重在將curcumin與其他化合物共同作用,使得低濃度的curcumin就具有殺死癌細胞的能力。本研究的目的是將兩種類型的NO donors: DNICs(dinitrosyl iron complexes)與RREs (Roussin’s red esters)共8種無機化合物(NC01、02、03、04、06、08、10、11)與curcumin共同作用於老鼠黑色素腫瘤細胞(B16-F10)上,比較這些NO donors與curcumin兩者單獨作用與共同作用時,其細胞毒性之差異。結果顯示NC03,NC04與curcumin共同作用,反而會減少curcumin的細胞毒性。其中,若先以curcumin作用4小時再加入NC03反應24小時,則會增加細胞毒性,但若先加入NC03再加入curcumin則無相同現象。此外,NC10與curcumin共同作用時,則會增加curcumin的細胞毒性。進一步由全光譜分析發現,NC03,NC04與NC10可能會與curcumin結合,因而改變curcumin的毒性。本研究的結果,將可做為未來研發更具有抗癌效果的curcumin與NO donors複合物之基礎。
Nitric oxide is a very important biological substance in mammals. It participates in the nervous system of the signal transmission, immune response, and promotion of vasodilation. In recent years, studies have shown that the amount of nitric oxide could affect the growth of cancer cells. High doses of NO (> 1 micorM) could lead to the death of cancer cells. However, in normal physiological conditions, the concentration of nitric oxide is very low. Therefore, several NO donors have been developed and used in cancer research. Curcumin is a natural polyphenol which has been proved in clinical trial for inhibiting tumor growth. However, the low solubility and poor absorption by oral administration have reduced the clinical value of curcumin. Recent researches have focused on co-treatment of curcumin and other compounds to increase the cytotoxicity curcumin. The aim of this study is to investigate the cytotoxicity of curcumin combined with two types NO donors: DNICs (dinitrosyl iron complexes) and RREs (Roussin’s red esters) against mouse melanoma cells (B16-F10). Eight NO donors (NC01、02、03、04、06、08、10、11) were tested in this study. The results showed that NC03, NC04 combined with curcumin could reduce the cytotoxicity of curcumin. But, the pretreatment of curcumin for 4 hrs followed by the treatment of NC03 for 24 hrs could increase the cytotoxicity of curcumin. However, pretreatment of NC03 for 4 hrs followed by the treatment of curcumin for 24 hrs did not enhance the cytotoxicity. Furthermore, the co-treatment of the low concentration NC10 and curcumin displayed significant increasing cytotoxicity. The results of UV spectra analysis suggested that NC03, NC04 and NC10 may interact with curcumin, therefore, altering cytotoxicity of curcumin. Together, these results provide useful information for the development of new curcumin- NO donors complexes as anti-cancer agents in the future.
誌謝----------I
中文摘要------II
英文摘要------III
目次----------V
圖目錄--------VI
壹、前言-------1
貳、材料與方法---9
叁、結果-------17
肆、討論-------24
伍、結論-------30
陸、參考文獻----31
圖-------------38
圖一 一氧化氮合成示意圖-----------------------------------1
圖二 NO donors 與curcumin結構圖-------------------------38
圖三 NO donors單獨作用或與curcumin共同作用之細胞毒性分析----40
圖四 PPN細胞毒性之探討-----------------------------------41
圖五 Curcumin單獨作用或與NO donors共同作用UV全波長分析-----43
圖六 NC03細胞內curcumin螢光吸收量比較---------------------44
圖七 Curcumin前處理對增強NC03細胞毒性的分析----------------45
圖八 NC03前處理對增強curcumin細胞毒性的分析----------------46
圖九 NC10與curcumin共同作用24小時效果之分析----------------47
圖十 NC10與curcumin共同作用48小時效果之分析----------------48
圖十一 NC10在UV光激發下細胞毒性的效果------------------------49
圖十二 UV光照射對低劑量 NC03剪切質體DNA之效果----------------50
圖十三 UV光照射對低劑量 NC10剪切質體DNA之效果----------------51
圖十四 UV光照射對高劑量 NC03剪切質體DNA之效果----------------52
圖十五 UV光照射對高劑量 NC10剪切質體DNA之效果----------------53
圖十六 UV光照射對curcumin與 NC10剪切質體DNA之效果------------54
張涵筠(2008)。影響亞硝基鐵化合物誘發破壞DNA斷切因子之研究。未出版之碩士論文,嘉義市,嘉義大學應用化學研究所。
Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research, 23(1A), 363-398.
Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N., & Aggarwal, B. B. (2008). Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol, 76(11), 1590-1611.
Bosworth, C. A., Toledo, J. C. Jr., Zmijewski, J. W., Li, Q., & Lancaster, J. R. Jr. (2009). Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc Natl Acad Sci U S A, 106(12), 4671-4676.
Chen, Y. J., Ku, W. C., Feng, L. T., Tsai, M. L., Hsieh, C. H., Hsu, W. H., Liaw, W. F., Hung, C. H., & Chen, Y. J. (2008). Nitric oxide physiological responses and delivery mechanisms probed by water-soluble Roussin's red ester and {Fe(NO)2}10 DNIC. J Am Chem Soc, 130(33), 10929-10938.
Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., Ko, J. Y., Lin, J. T., Lin, B. R., Ming-Shiang, W., Yu, H. S., Jee, S. H., Chen, G. S., Chen, T. M., Chen, C. A., Lai, M. K., Pu, Y. S., Pan, M. H., Wang, Y. J., Tsai, C. C., & Hsieh, C. Y. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21(4B), 2895-2900.
Chiueh, C. C., & Rauhala, P. (1999). The redox pathway of S-nitrosoglutathione, glutathione and nitric oxide in cell to neuron communications. Free Radic Research, 31(6), 641-650.
Deng, X. S., & Deitrich, R. A. (2007). Ethanol metabolism and effects: nitric oxide and its interaction. Curr Clin Pharmacol, 2(2), 145-153.
Donato, A. J., Gano, L. B., Eskurza, I., Silver, A. E., Gates, P. E., Jablonski, K. L., & Seals, D. R. (2009). Vascular Endothelial Dysfunction with Aging: Endothelin-1 and Endothelial Nitric Oxide Synthase. Am J Physiol Heart Circ Physiol, 00689.02008.
Espey, M. G., Miranda, K. M., Pluta, R. M., & Wink, D. A. (2000). Nitrosative capacity of macrophages is dependent on nitric-oxide synthase induction signals. J Biol Chem, 275(15), 11341-11347.
Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373-376.
Hartwell, L. H., & Weinert, T. A. (1998). Checkpoints:controls that ensure the order of cell cycle events. Science, 246, 629-634.
Hofseth, L. J., Saito, S., Hussain, S. P., Espey, M. G., Miranda, K. M., Araki, Y., Jhappan, C., Higashimoto, Y., He, P., Linke, S. P, Quezado, M. M., Zurer, I., Rotter, V., Wink, D. A., Appella, E., & Harris, C. C. (2003). Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci U S A,. 100(1), 143-148.
Holm, B., Jensen, P. B., Sehested, M., & Hansen, H. H. (1994). In vivo inhibition of etoposide-mediated apoptosis, toxicity, and antitumor effect by the topoisomerase II-uncoupling anthracycline aclarubicin. Cancer Chemother Pharmacol, 34(6), 503-508.
Huang, M. T., Smart, R. C., Wong, C. Q., & Conney, A. H. (1988). Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Research, 48(21), 5941-5946.
Huang, M. T., Lou, Y. R., Ma, W., Newmark, H. L., Reuhl, K. R., & Conney, A. H. (1994). Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res, 54(22), 5841-5847.
Kane, M. O., Anselm, E., Rattmann, Y. D., Auger, C., & Schini-Kerth, V. B. (2009). Role of gender and estrogen receptors in the rat aorta endothelium-dependent relaxation to red wine polyphenols. Vascul Pharmacol, In Press, Accepted Manuscript, Available online.
Kim, J. H., Xu, C., Keum, Y. S., Reddy, B., Conney, A., & Kong, A. N. (2006). Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin. Carcinogenesis, 27(3), 475-82.
Krishnaswamy, K., Goud, V. K., Sesikeran, B., Mukundan, M. A., & Krishna, T. P. (1998). Retardation of experimental tumorigenesis and reduction in DNA adducts by turmeric and curcumin. Nutr Cancer, 30(2), 163-166.
Kunwar, A., Barik, A., Mishra, B., Rathinasamy, K., Pandey, R., & Priyadarsini, K. I. (2008). Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta, 1780(4), 673-679.
Lev-Ari, S., Strier, L., Kazanov, D., Madar-Shapiro, L., Dvory-Sobol, H., Pinchuk, I., Marian, B., Lichtenberg, D., & Arber, N. (2005). Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Research, 11(18), 6738-6744.
Lev-Ari, S., Strier, L., Kazanov, D., Elkayam, O., Lichtenberg, D., Caspi, D., & Arber, N. (2006). Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatology (Oxford), 45(2), 171-177.
Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M. W., & Li, C. Y. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell, 26(2), 157-158.
Maiti, K., Mukherjee, K., Gantait, A., Saha, B. P., & Mukherjee, P. K. (2007). Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm, 330(1-2), 155-163.
Marczylo, T. H., Verschoyle, R. D., Cooke, D. N., Morazzoni, P., Steward, W. P., & Gescher, A. J. (2007). Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol, 60(2), 171-177.
Martí, M. A., Bidon-Chanal, A., Crespo, A., Yeh, S. R., Guallar, V., Luque, F. J., & Estrin, D. A. (2008). Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N. J Am Chem Soc, 130(5), 1688-93.
Oren, M., & Bartek, J. (2007). The Sunny Side of p53. Cell, 128(5), 826-828.
Palmer, R. M., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327(6122), 524-526.
Pietenpol, J. A., & Stewart, Z. A. (2002). Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology, 181-182, 475-481.
Ridnour, L. A., Thomas, D. D., Switzer, C., Flores-Santana, W., Isenberg, J. S., Ambs, S., Roberts, D. D., & Wink, D.A. (2008). Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide, 19(2), 73-76.
Sahu, A., Kasoju, N., & Bora, U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules, 9(10), 2905-2912.
Schreiber, F., Loeffler, B., Polerecky, L., Kuypers, M. M. M., & de Beer, D. (2009). Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm. ISME J.
Sou, K., Inenaga, S., Takeoka, S., & Tsuchida, E. (2008). Loading of curcumin into macrophages using lipid-based nanoparticles. Int J Pharm, 352(1-2), 287-293.
Sreejayan, & Rao, M. N. (1997). Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol, 49(1), 105-107.
Suzuki, T., Nagae, O., Kato, Y., Nakagawa, H., Fukuhara, K., & Miyata, N. (2005). Photoinduced nitric oxide release from nitrobenzene derivatives. J Am Chem Soc, 127(33), 11720-11726.
Thomas, D. D., Espey, M. G., Ridnour, L. A., Hofseth, L. J., Mancardi, D., Harris, C. C., & Wink, D. A. (2004). Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci U S A, 101(24), 8894-8899.
Thomas, D. D., Ridnour, L. A., Espey, M. G., Donzelli, S., Ambs, S., Hussain, S. P, Harris, C. C., DeGraff, W., Roberts, D. D., Mitchell, J. B., & Wink, D. A. (2006). Superoxide fluxes limit nitric oxide-induced signaling. J Biol Chem, 281(36), 25984-25993.
Valentini, A., Conforti, F., Crispini, A., De Martino, A., Condello, R., Stellitano, C., Rotilio, G., Ghedini, M., Federici, G., Bernardini, S., & Pucci, D. (2009). Synthesis, oxidant properties, and antitumoral effects of a heteroleptic palladium(II) complex of curcumin on human prostate cancer cells. J Med Chem, 52(2), 484-491.
Vanin, A. F. (2009). Dinitrosyl iron complexes with thiolate ligands: Physico-chemistry, biochemistry and physiology. Nitric Oxide, Volume In Press, Issue Corrected Proof, Available online.
Vaux, D. L., Whitney, D., & Weissman, I. L. (1996). Activation of physiological cell death mechanisms by a necrosis-causing agent. Microsc Res Tech, 34(3), 259-266.
Villunger, A., Egle, A., Kos, M., Hartmann, B. L., Geley, S., Kofler, R., & Greil, R. (1997). Drug-induced apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia cells. Cancer Research, 57(16), 3331-3334.
Wang, Z., Desmoulin, S., Banerjee, S., Kong, D., Li, Y., Deraniyagala, R. L., Abbruzzese, J., Sarkar, F. H. (2008). Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sci, 83(7-8), 293-300.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top