(34.237.124.210) 您好!臺灣時間:2021/03/02 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱雅琳
研究生(外文):Chiu,Ya-Lin
論文名稱:實施同儕交互指導策略對九年級學生數學解題表現影響之行動研究
論文名稱(外文):Effects of Reciprocal Peer Tutoring on mathematical problem solving performances of the 9th graders.
指導教授:溫媺純溫媺純引用關係
指導教授(外文):Meichun Lydia Wen
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:167
中文關鍵詞:同儕交互指導策略解題表現解題知識行動研究
外文關鍵詞:Reciprocal Peer Tutoringmathematical problem-solving performanceproblem-solving knowledgeaction research
相關次數:
  • 被引用被引用:18
  • 點閱點閱:303
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:6
本研究目的在探討施行同儕交互指導策略在九年級學生時,對學生數學解題表現的影響。在兩階段的行動研究循環中,透過解題分析單、課室觀察錄影、學生晤談、教師日誌等方式蒐集資料並進行質性分析,藉此觀察學生運用數學解題知識,進行解題的表現之影響,以及對同儕合作學習的觀感。並且針對在施行策略的過程中,對於可能遭遇的問題,找出其因應策略。研究結果發現實施同儕交互指導策略有助於提升學生數學解題表現,尤其對於低成就群學生更有明顯助益。
The purpose of this study was to improve 9th graders’ mathematical problem solving performances through Reciprocal Peer Tutoring, and to observe its differences in students’feeling, influence of mathematical problem-solving performance.
This study was implemented in a nineth-grade mathematics classroom of twenty-eight students. This action research included two action-research cycles, and data were collected including problem-solving worksheets, classroom observations, interviews and the teacher’s reflection notes.Data of study were analyzed by qualitative methods.
The results of the research are as follows: (1).The heterogeneity composition considered with the peer relationship improved students’cooperative learning in math; (2). Multiple ways of encouragements animated learning in math. (3). The students were more actively involved in the classroom, especially the low mathematical achievers.
Finally, this study provides suggestions for future teaching and related research.
目次
目次………………………………………………………………………………I
圖次………………………………………………………………………………II
表次………………………………………………………………………………III
附錄次……………………………………………………………………………IV

第一章 緒論
 第一節 研究背景與研究動機………………………………………………1
 第二節 研究目的與待答問題………………………………………………3
 第三節 重要名詞釋義………………………………………………………3
 第四節 研究限制……………………………………………………………4
第二章 文獻探討
 第一節 數學解題……………………………………………………………5
 第二節 同儕交互指導策略…………………………………………………19
 第三節 相關實徵性研究……………………………………………………24
 第四節 行動研究……………………………………………………………30
第三章 研究方法
 第一節 研究情境及對象……………………………………………………39
 第二節 研究者的背景及角色………………………………………………41
 第三節 研究設計與流程……………………………………………………43
 第四節 研究工具……………………………………………………………53
 第五節 資料分析……………………………………………………………62
第四章 研究結果與討論
 第一節 施行同儕交互指導策略,所遭遇的問題及因應策略……………64
 第二節 施行同儕交互指導策略,對解題的表現影響……………………108
 第三節 施行同儕交互指導策略,對不同數學成就群的學生影響差異…113
第五章 結論與建議
 第一節 研究發現與結論……………………………………………………144
 第二節 研究建議……………………………………………………………147
參考文獻
中文部分…………………………………………………………………………151
英文部分…………………………………………………………………………153

附錄次
附錄一 單元教學計畫表 ………………………………………………………156
附錄二 教案學習單範例 ………………………………………………………157
附錄三 解題分析單 ……………………………………………………………158
附錄四 感受問卷 ………………………………………………………………165
附錄五 晤談大綱紀錄表 ………………………………………………………166
附錄六 教學日誌 ………………………………………………………………167

圖 次
圖2-1 Lewin 的行動研究週期圖 ……………………………………………33
圖2-2 Kemmis 的行動研究流程圖……………………………………………34
圖2-3 Elliot 的行動研究流程圖……………………………………………35
圖3-1 研究流程圖………………………………………………………………52
圖4-1 學生運用五種解題知識的變化曲線圖…………………………………112
圖4-2 不同數學成就群學生解題知識總分變化曲線圖………………………120

表 次
表2-1 Polya 怎樣解題提示表 ………………………………………………12
表2-2 Polya 與其他學者對解題的理論比較表 ……………………………13
表2-3 結合 Polya 解題階段和Mayer 解題知識類型的分析表 …………14
表3-1 單元教學教案範例─以二元一次聯立方程式為例 ……………………46
表3-2 解題知識分類表…………………………………………………………58
表3-3 本研究使用研究工具內容說明表………………………………………61
表3-4 研究工具與代答問題對應表……………………………………………63
表4-1 學生感受問卷統計結果:學習數學感到最困難之處…………………65
表4-2 學生感受問卷統計結果:最能幫助學習數學的方式…………………65
表4-3 學生感受問卷統計結果:解題時最常尋求的協助管道………………66
表4-4 學生在解題四階段運用Meyar 解題知識的統計情形 ………………109
表4-5 不同數學成就群在「了解題意」階段分類人數統計表………………114
表4-6 不同數學成就群在「擬定計畫」階段分類人數統計表………………116
表4-7 不同數學成就群在「執行計畫」階段人數統計表……………………118
表4-8 不同數學成就群在「驗算回顧」階段人數統計表……………………119
一、 中文部分
石兆蓮(2006)。合作學習對兒童溝通表達能力影響之實驗研究。載於黃政傑、吳俊憲(主編),合作學習:發展與實踐(105-154頁)。臺北市:五南圖書出版股份有限公司。
何欣玫(2005)。淺談數學解題之溝通能力。國教輔導,45(1),27-33。
何縕琪和林清山(1994)。表徵策略教學對提升國小低解題正確率學生解題表現之效果研究。國立台灣師範大學教育心理與輔導學系心理學報。27,259-279。
林生傳(1996)。教育心理學。台北市:五南。
林生傳(2005)。教育研究法:全方位的統整與分析。台北市:心理。
林清山和張景媛(1993)。國中生後設認知、動機信念與數學解題策略之關係研究。國立台灣師範大學教育心理與輔導學系教育心理學報。26,53-74。
林清山(譯)(1996)。教育心理學-認知取向(原作者:Richard E. Mayer)。台北市:遠流。(原著出版年:1986)
吳美枝、何禮恩(譯)(2001)。行動研究:生活實踐家的研究錦囊(原作者:Jean McNiff, Pamela Lomax, Jack Whitehead)。嘉義市:濤石文化。(原著出版年:1996)
吳昭容(2003)。理解和計算,有何兩難?國民教育,44(2),36-41。
吳德邦和吳順治(1991)。解題導向的數學教學策略。台北市:五南。
洪郁雯和楊德清(2005)。九年一貫教育改革下-談數學課室裡的教與學。國教輔導,45(3),39-49。
洪碧霞、黃瑞煥、陳婉玫(譯)(1984)。認知心理學(原作者:Richard E. Mayer)。高雄市:復文。(原著出版年:1980)
姜文閔(譯)(1995)。我們如何思維(原作者:John Dewey)。台北市:五南。(原著出版年:1933)
夏林清(譯)(1999)。行動研究方法導論:教師動手做研究(原作者:Herbert Altrichter,Peter Posch, Bridget Somekh)。台北市:遠流。(原著出版年:1993)
教育部(2003)。國民教育階段九年一貫課程綱要。台北:教育部。
陸正威和王慧豐(2000)。同儕交互指導數學解題方案對國小學童數學解題表現、數學焦慮及後設認知影響知實驗研究。花蓮師院學報,10,273-298。
陳啟明(2003)。合作學習在數學領域的教學策略。師友月刊,430,43-46。
陳嘉彌(2008)。跨年級同儕師徒制中師傅生學業成績及其學習感受改變之分析。教育研究與發展期刊,4(3),109-140。
黃政傑和林佩璇(1996)。合作學習。台北市:五南。
黃敏晃(1986)。數學解題規則。台北市:牛頓。
黃敏晃(1991)。淺談數學解題。教與學,23,2-15。
馮莉雅(1997)。從數學解題模式探討數學學習策略及教師策略。教育資料文摘,39(5),160-179。
張國樑(2004)。國中生代數文字題之解題歷程分析研究。未出版,國立高雄師範大學數學研究所碩士論文,高雄市。
張景媛(1994)。國中數學學習歷程統整模式之研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27,141-174。
張景媛(1995)。國中生建構幾何概念之研究暨統整式合作學習的幾何教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,28,99-144。
葉明達(2003)。高一學生數學合作解題互動歷程與情意因素之分析。花蓮師院學報,16,233-268。
楊巧玲(2000)。問題導向教學與合作學習教學策略之理論與實際。課程與教學季刊,3(3),121-136。
劉湘川、許天維和林原宏(1994)。問題解決的研究與教學。國教輔導,33(2),13-18。
劉錫麒(1989)。國小高年級學生數學解題歷程及其相關因素的研究。花蓮師院學報,3,21-68。
劉錫麒(1993)。合作反省思考的數學解題教學模式及其實徵研究。研究資訊,1(5),16-25。
蔡坤憲(譯)(2006)。怎樣解題(原作者:George Polya)。台北市:天下遠見。(原著出版年:1956)
趙月君(2004)。國中教師運用同儕交互指導降低學生數學焦慮之行動研究。未出版,國立彰化師範大學科學教育研究所碩士論文,彰化市。
鄭博信、詹勳國、劉曼麗和王瑋樺(2000)。數學學習障礙學生解題與錯誤類型之研究。師範學院教育學術論文發表會論文集,571~575頁。
鍾靜和丁惠琪(2006)。合作學習應用在國小數學教學之探究。載於黃政傑、吳俊憲(主編),合作學習:發展與實踐(335-332頁)。臺北市:五南圖書出版股份有限公司。
顏銘志(1998)。國小數學解題教學的省思。國教天地,129,40-45。
學習理論與教學應用(吳幸宜譯)(1996)。台北市:心理。(原著出版年:1991)
蕭月穗(2000)。國小教室中的小組合作學習。國教之聲,33(4),14-21。
二、 西文部分
Bock, D. D. (2002). Improper use of linear reasoning: An in-depth study of the nature and the irresistibility of secondary school student’s errors. Educational Studies in Mathematics, 50, 311-334.
Duarn, D. & Monereo, C. (2005). Styles and sequences of cooperative interaction in fixed and reciprocal peer tutoring. Learning and Instruction, 15,179-199.
Fantuzzo, J. W., Riggo R. E., Connelly S., & Dimeff, L. A.(1989).Effects of reciprocal peer tutoring on academic achievement and psychological adjustment: A component analysis.Journal of Education Psychology, 81(2), 173-177.
Fantuzzo, J. W., King. J. A., & Heller, L. R.(1992).Effects of reciprocal peer tutoring on mathematics and school adjustment: Acomponent analysis. Journal of Education Psychology, 84(3), 331-339.
Gadanidis, G. (1988). Problem solving: The third dimensions in mathematics teaching. The Matnematics Teacher, 81 , 16-20.
Griffin, M. M. & Griffin, B. M. (1998). An investigation of the effects of reciprocal peer tutoring on achievement, self-efficacy, and test anxiety. Contemporary Educational Psychology, 23, 298-311.
Heller, L. R. & Fantuzzo, J. W. (1993).Reciprocal peer tutoring and parent partnership: Does parent involvement make a difference? School Psychology review, 22(3), 517-534.
Hiebert, J. (1987). Conceptual and procedural knowledge. NJ: Lawrence Erlbaum Associates,Inc.
Khanlou, N. & Peter, E. (2005). Participatory action research: considerations for ethical review. Social Science & Medicine, 60, 2333-2340.
Lester, F. K. (1982).Building bridges between psychological and mathematics education research on problem solving.In Lester, F. K, & Garofalo, J. (Eds.), Mathematical problem solving(pp.55-85 ). Philadelphia, PA: The Franklin Press.
Leikin, R. & Kawass, S. (2005). Planning teaching an unfamiliar mathematics problem: The role of teachers’ experience in solving the problem and watching pupils solving it. Journal of Mathematical Behavior , 24, 253-274.
McNiff, J. & Whitehead, J. (2002). Action research principles and practice. NY: RoutledgeFalmer.
McNiff, J. & Whitehead, J. (2005). Action research for teachers. London, UK: David Fulton Publishers Ltd.
Mayer, R. E. (1982). The psychology of mathematical problem solving. In Lester, F. K, & Garofalo, J. (Eds.), Mathematical problem solving(pp.1-13 ). Philadelphia, PA: The Franklin Press.
Mayer, R. E. (1983) . Thinking, problem solving, cognition (2nd ed.). NY: W. H. Freeman and Company.
National Council of Teachers of Mathematics[NCTM](1989).Curriculum and evaluationstands for school mathematics.Reston,VA:Author.
Nunokawa, K. (2005). Mathematical problem solving and learning mathematics: What we expect students to obtain. Journal of Mathematical Behavior, 24, 325-340.
Rearick, M. L. & Feldman, A. (1999). Orientations, purposes and reflection: A framework for understanding action research. Teaching and Teacher Education, 15, 333-349.
Rittschof, K. A. & Griffin, B. W. (2001). Reciprocal peer tutoring: Re-examining the value of a co-operative learning technique to college students and instructors. Educational Psychology, 21, 313-331.
Sagor, R. (2005). The Action research guidebook. CA: Corwin Press.
Schoenfeld, A. H. (1985). Mathematical problem solving. San Diego, CA: Academic Press.
Schoenfeld, A. H. (1994). Mathematical thinking and problem solving. Hillsdale, NJ: Lawrence Erlbaum Associates,Inc.
Scott, D. & Morrison, M. (2005). Key ideas in educational research. London, UK: Continuum.
Ubuz, B.& Ersoy, Y. (1997). The effect of problem-solving method with handout material on achievement in solving max-min word problems. Journal of Mathematical Behavior, 16(1), 75-85.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 顏銘志(1998)。國小數學解題教學的省思。國教天地,129,40-45。
2. 劉錫麒(1989)。國小高年級學生數學解題歷程及其相關因素的研究。花蓮師院學報,3,21-68。
3. 劉湘川、許天維和林原宏(1994)。問題解決的研究與教學。國教輔導,33(2),13-18。
4. 楊巧玲(2000)。問題導向教學與合作學習教學策略之理論與實際。課程與教學季刊,3(3),121-136。
5. 張景媛(1995)。國中生建構幾何概念之研究暨統整式合作學習的幾何教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,28,99-144。
6. 張景媛(1994)。國中數學學習歷程統整模式之研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27,141-174。
7. 黃敏晃(1991)。淺談數學解題。教與學,23,2-15。
8. 陳嘉彌(2008)。跨年級同儕師徒制中師傅生學業成績及其學習感受改變之分析。教育研究與發展期刊,4(3),109-140。
9. 陳啟明(2003)。合作學習在數學領域的教學策略。師友月刊,430,43-46。
10. 吳昭容(2003)。理解和計算,有何兩難?國民教育,44(2),36-41。
11. 何欣玫(2005)。淺談數學解題之溝通能力。國教輔導,45(1),27-33。
12. 江志正(2002)。國民小學教師面對九年一貫課程變革態度之研究:以中部地區為例。臺中師院學報,16,177-200。
13. 吳錦錩(2005)。從資源基礎、能耐基礎與動態能力觀點探討企業持續性競爭優勢構面-以台灣代工製造公司為例。東海管理評論,7,137-166。
14. 巫立宇(2006)。資源、社會資本、路徑相依與動態能力之研究。管理評論,25,121-140。
15. 李仁芳、賴建男、賴威龍(1998)。臺灣IC設計業中技術知識特質與組織動態能耐之研究。科技管理學刊,3(1),37-80。
 
系統版面圖檔 系統版面圖檔