(3.238.186.43) 您好!臺灣時間:2021/03/02 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂秋松
論文名稱:巢狀式行動網路之快速換手機制
指導教授:張英超張英超引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:150
中文關鍵詞:MIPv6Network MobilityFMIPv6HCoP-B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
如何達成行動節點(MN)在巢狀式行動網路(NEMO)可以無縫式換手(Seamless Handoff),是我們論文所追求的目標。因此,藉由第二層(Layer 2)的trigger來通知第三層的NEMO協定HCoP-B提早做換手,也就是利用預先猜測NEMO之後可能換手至另一AR下,提早跟新的AR做連線,並且結合FMIPv6的流程,藉由交換HI和HAck訊息,在舊的和新的AR下建立通道(bi-directional tunnel),達成無縫式換手。我們設計透過802.11 L2與802.16 L2的換手訊息,提早觸發巢狀式行動網路的快速無縫換手,更進一步減少換手延遲、封包中斷,並達成路由最佳化。
此外我們也針對快速換手的predictive和reactive情形進行探討分析,在Predictive mode裡,藉由網路架構圖分成Intra-MAP和Inter-MAP模式的換手行為,探討分析在換手期間所造成的通訊中斷影響。在Reactive mode裡,探討因Fast Movement和Erroneous Movement情況提早發生換手的情形,並且分析各種效能項目。
因此,本論文完整的提出了支援巢狀式行動網路下Fast HCoP-B快速無縫換手的解決方案,不論是「主動模式」或「反應模式」、「802.11」或「802.16」的無線網路存取都涵蓋在內。
第一章 序論 1
1.1 研究背景及目的 1
1.2 論文架構 6
第二章 文獻探討與相關研究 7
2.1 Mobile IPv6 Fast Handover (FMIPv6) 9 7
2.2 在各種網路環境裡使用Mobile IPv6 Fast Handover 10
2.2.1 FMIPv6 for 802.11 10
2.2.2 FMIPv6 for 802.16 13
2.2.3 使用Mobile IPv6 Fast Handover解決各種問題 15
2.3 各種NEMO RO的協定介紹 19
2.3.1 Reverse Routing Header (RRH) 19
2.3.2 MIPv6 Route Optimization for NEMO (MIRON) 20
2.3.3 HCoP-B架構與運作說明 21
2.4 問題與討論 27
第三章 Fast HCoP-B架構與運作說明 28
3.1 Predictive Mode for FHCoP-B 31
3.1.1 Intra-MAP Handoff 31
3.1.2 Inter-MAP Handoff 46
3.2 Reactive Mode for FHCoP-B 63
3.2.1 Fast Movement 66
3.2.3(2) Erroneous Movement 76
第四章 數值分析與結果 82
4.1 Handoff Latency 84
4.2 Buffering time 98
4.3 Packet Loss time 118
4.4 Total Handoff Cost 125
4.5 The number of extra message 135
4.6 Handoff Preparation Latency 139
第五章 結論與未來工作 147
參考文獻 148

圖索引
圖 1. NEMO Basic行動網路的架構圖 3
圖 2. 換手流程圖(Layer 2 + Layer 3) 4
圖 3. Pinball Routing 5
圖 4(a). Predictive Mode for FMIPv6 9
圖 4(b). Reactive Mode for FMIPv6 9
圖 5. Enhanced Fast Handover (EFH) 11
圖 6. L2+L3換手流程圖 12
圖 7. 802.16環境裡使用FMIPv6的訊息流程圖 14
圖 8. Timing graph for the proposed enhanced fast handover scheme 16
圖 9. RRH換手過程 20
圖 10. MIRON換手過程 21
圖 11. HCoP-B中 MR代替MN發送GBU訊息以及BUT的建置 22
圖 12. R flag的Mobility Option 23
圖 13. The format of the new type 29 mobility option 25
圖 14. HCoP-B MR2行動子網路離開MAP管理的行動網路時,請求MAP傳送相關的BUT資訊給MR2 25
圖 15. MR2行動子網路進入新的MAP,快速重建BUT與全域換手的流程 26
圖 16. 換手程序RSS與L2事件的分析 29
圖 17. 行動網路架構圖 31
圖 18. Intra-MAP Handoff (802.11802.11) 網路架構圖 32
圖 19. RRH Intra-MAP (802.11802.11) Handoff 流程圖) 34
圖 20. MIRON Intra-MAP (802.11802.11) Handoff 流程圖 37
圖 21. HCoP-B Intra-MAP (802.11802.11) Handoff 流程圖 40
圖 22. FHCoP-B Intra-MAP (802.11802.11) Handoff流程圖 45
圖 23. Inter-MAP (802.11802.16) Handoff網路架構圖 47
圖 24. RRH Inter-MAP (802.11802.16) Handoff 流程圖 49
圖 25. MIRON Inter-MAP (802.11802.16) Handoff 流程圖 51
圖 26. HCoP-B Inter-MAP (802.11802.16) Handoff 流程圖 55
圖 27. FHCoP-B Inter-MAP (802.11802.16) Handoff流程圖 62
圖 28(a). FMIPv6 Reactive Fast Handover 64
圖 28(b). FHCoP-B Reactive Fast Handover 64
圖 29. FHCoP-B換手失敗時間圖 Fast Movement (case 1) 67
圖 30. FHCoP-B Inter-MAP 802.11802.11換手失敗流程圖Fast Movement (case 1) 69
圖 31. FHCoP-B換手失敗時間圖 Fast Movement (case 2) 73
圖 32. FHCoP-B Inter-MAP 802.11802.11換手失敗流程圖 Fast Movement (case2:After sending FBU and before receiving FBAck) 74
圖 33. FHCoP-B換手失敗時間圖 (erroneous movement) 77
圖 34. 換手失敗流程圖 (Erroneous Movement) 78
圖 35. 實驗分析架構圖(LH = 0, 3, 6) 83
圖 36. 實驗分析架構圖(JH = 1, 4, 7) 83
圖 37. Predictive Intra-MAP Handoff Latency (LH = 0) 85
圖 38. Predictive Intra-MAP Handoff Latency (LH = 3) 85
圖 39. Predictive Intra-MAP Handoff Latency (LH = 6) 86
圖 40. Predictive Intra-MAP Handoff Latency (JH = 1) 86
圖 41. Predictive Intra-MAP Handoff Latency (JH = 4) 87
圖 42. Predictive Intra-MAP Handoff Latency (JH = 7) 87
圖 43. Predictive Intra-MAP Handoff Latency (LH = 0, 3, 6) 88
圖 44. Predictive Intra-MAP Handoff Latency (JH = 1, 4, 7) 89
圖 45. Predictive Inter-MAP Handoff Latency (LH = 0) 90
圖 46. Predictive Inter-MAP Handoff Latency (LH = 3) 91
圖 47. Predictive Inter-MAP Handoff Latency (LH = 6) 91
圖 48. Predictive Inter-MAP Handoff Latency (JH = 1) 92
圖 49. Predictive Inter-MAP Handoff Latency (JH = 4) 92
圖 50. Predictive Inter-MAP Handoff Latency (JH = 7) 93
圖 51. Predictive Inter-MAP Handoff Latency (LH = 0, 3, 6) 94
圖 52. Predictive Inter-MAP Handoff Latency (JH = 1, 4, 7) 94
圖 53. Reactive Inter-MAP Handoff Latency (LH = 0) 95
圖 54. Reactive Inter-MAP Handoff Latency (LH = 3) 96
圖 55. Reactive Inter-MAP Handoff Latency (LH = 6) 96
圖 56. Reactive Inter-MAP Handoff Latency (JH = 1) 97
圖 57. Reactive Inter-MAP Handoff Latency (JH = 4) 97
圖 58. Reactive Inter-MAP Handoff Latency (JH = 7) 98
圖 59. FHCoP-B PMAP buffering time for forwarded packets (LH = 0) 99
圖 60. FHCoP-B PMAP buffering time for forwarded packets (LH = 3) 100
圖 61. FHCoP-B PMAP buffering time for forwarded packets (LH = 6) 100
圖 62. FHCoP-B PMAP buffering time for forwarded packets (JH = 1) 101
圖 63. FHCoP-B PMAP buffering time for forwarded packets (JH = 4) 101
圖 64. FHCoP-B PMAP buffering time for forwarded packets (JH = 7) 102
圖 65. FHCoP-B NMAP buffering time for forwarded packets (LH = 0) 103
圖 66. FHCoP-B NMAP buffering time for forwarded packets (LH = 3) 103
圖 67. FHCoP-B NMAP buffering time for forwarded packets (LH = 6) 104
圖 68. FHCoP-B NMAP buffering time for forwarded packets (JH = 1) 104
圖 69. FHCoP-B NMAP buffering time for forwarded packets (JH = 4) 105
圖 70. FHCoP-B NMAP buffering time for forwarded packets (JH = 7) 105
圖 71. FHCoP-B NMAP buffering time for subsequent packets (LH = 0) 107
圖 72. FHCoP-B NMAP buffering time for subsequent packets (LH = 3) 107
圖 73. FHCoP-B NMAP buffering time for subsequent packets (LH = 6) 108
圖 74. FHCoP-B NMAP buffering time for subsequent packets (JH = 1) 108
圖 75. FHCoP-B NMAP buffering time for subsequent packets (JH = 4) 109
圖 76. FHCoP-B NMAP buffering time for subsequent packets (JH = 7) 109
圖 77. FHCoP-B NNMAP buffering time for subsequent packets (LH = 0) 110
圖 78. FHCoP-B NNMAP buffering time for subsequent packets (LH = 3) 111
圖 79. FHCoP-B NNMAP buffering time for subsequent packets (LH = 6) 111
圖 80. FHCoP-B NNMAP buffering time for subsequent packets (JH = 1) 112
圖 81. FHCoP-B NNMAP buffering time for subsequent packets (JH = 4) 112
圖 82. FHCoP-B NNMAP buffering time for subsequent packets (JH = 7) 113
圖 83. FHCoP-B total buffering time (LH = 0) 114
圖 84. FHCoP-B total buffering time (LH = 3) 114
圖 85. FHCoP-B total buffering time (LH = 6) 115
圖 86. FHCoP-B total buffering time (JH = 1) 115
圖 87. FHCoP-B total buffering time (JH = 4) 116
圖 88. FHCoP-B total buffering time (JH = 7) 116
圖 89. FHCoP-B total buffering time (LH = 0, 3, 6) 117
圖 90. FHCoP-B total buffering time (JH = 1, 4, 7) 117
圖 91. Intra-MAP packet loss time (LH = 0) 119
圖 92. Intra-MAP packet loss time (LH = 3) 119
圖 93. Intra-MAP packet loss time (LH = 6) 120
圖 94. Intra-MAP packet loss time (JH = 1) 120
圖 95. Intra-MAP packet loss time (JH = 4) 121
圖 96. Intra-MAP packet loss time (JH = 7) 121
圖 97. Inter-MAP packet loss time (LH = 0) 122
圖 98. Inter-MAP packet loss time (LH = 3) 123
圖 99. Inter-MAP packet loss time (LH = 6) 123
圖 100. Inter-MAP packet loss time (JH = 1) 124
圖 101. Inter-MAP packet loss time (JH = 4) 124
圖 102. Inter-MAP packet loss time (JH = 7) 125
圖 103. Total Handoff Cost of Predictive Intra-MAP Handoff (LH = 0) 126
圖 104. Total Handoff Cost of Predictive Intra-MAP Handoff (LH = 3) 126
圖 105. Total Handoff Cost of Predictive Intra-MAP Handoff (LH = 6) 127
圖 106. Total Handoff Cost of Predictive Intra-MAP Handoff (JH = 1) 127
圖 107. Total Handoff Cost of Predictive Intra-MAP Handoff (JH = 4) 128
圖 108. Total Handoff Cost of Predictive Intra-MAP Handoff (JH = 7) 128
圖 109. Total Handoff Cost of Predictive Inter-MAP Handoff (LH = 0) 129
圖 110. Total Handoff Cost of Predictive Inter-MAP Handoff (LH = 3) 130
圖 111. Total Handoff Cost of Predictive Inter-MAP Handoff (LH = 6) 130
圖 112. Total Handoff Cost of Predictive Inter-MAP Handoff (JH = 1) 131
圖 113. Total Handoff Cost of Predictive Inter-MAP Handoff (JH = 4) 131
圖 114. Total Handoff Cost of Predictive Inter-MAP Handoff (JH = 7) 132
圖 115. Total Handoff Cost of Reactive Inter-MAP Handoff (LH = 0) 133
圖 116. Total Handoff Cost of Reactive Inter-MAP Handoff (LH = 3) 133
圖 117. Total Handoff Cost of Reactive Inter-MAP Handoff (LH = 6) 134
圖 118. Total Handoff Cost of Reactive Inter-MAP Handoff (JH = 1) 134
圖 119. Total Handoff Cost of Reactive Inter-MAP Handoff (JH = 4) 135
圖 120. Total Handoff Cost of Reactive Inter-MAP Handoff (JH = 7) 135
圖 121. the number of extra message (LH = 0) 136
圖 122. the number of extra message (LH = 3) 137
圖 123. the number of extra message (LH = 6) 137
圖 124. the number of extra message (JH = 1) 138
圖 125. the number of extra message (JH = 4) 138
圖 126. the number of extra message (JH = 7) 139
圖 127. Handoff preparation latency (LH = 0) 140
圖 128. Handoff preparation latency (LH = 3) 140
圖 129. Handoff preparation latency (LH = 6) 141
圖 130. Handoff preparation latency (JH = 1) 141
圖 131. Handoff preparation latency (JH = 4) 142
圖 132. Handoff preparation latency (JH = 7) 142
圖 133. Intra-MAP Handoff preparation latency (LH = 0, 3, 6) 143
圖 134. Inter-MAP Handoff preparation latency (LH = 0, 3, 6) 143
圖 135. Intra-MAP Handoff preparation latency (JH = 1, 4, 7) 144
圖 136. Inter-MAP Handoff preparation latency (JH = 1, 4, 7) 144

表索引
表一. 行動網路環境相關參數設定 30
表二. Intra-MAP的效能比較表 145
表三. Inter-MAP的效能比較表 146
表四. Predictive與Reactive FHCoP-B的效能比較表 146
[1] D. Johnson, C. Perkins and J. Arkko, “Mobility Support in IPv6”, IETF RFC 3775, Jun. 2003.
[2] V. Devarapalli and R. Wakikawa, “NEMO Basic Support Protocol”, IETF RFC 3963, Jan. 2005.
[3] K. Leung, et al., “Network Mobility (NEMO) Extensions for Mobile IPv4,” IETF RFC 5177, Apr. 2008.
[4] P. Thubert and M. Molteni, “Taxonomy of Route Optimization Models in the NEMO Context”, Internet Draft: draft-thubert-nemo-ro-taxonomy-00, Oct. 2002.
[5] P. Thubert and M. Molteni, “IPv6 Reverse Routing Header and Its Application to Mobile Networks,” Internet-Draft: draft-thubert-nemo-reverse-routing-header-07.txt, Feb. 2007.
[6] C. J. Bermardos, M. Bagnulo and M. Calderon, “MIRON: MIPv6 Route Optimization for NEMO”, IEEE Conference on Applications and Services in Wireless Networks, pp. 189-197, Aug. 2004.
[7] T. Suzuki, et al., “Care-of Prefix Routing for Moving Networks”, IEICE Transaction On Communications., Vol. E88-B, No. 7, pp: 2756-2764, Jul. 2005.
[8] I.C. Chang and C.H. Chou, “HCoP-B: A Hierarchical Care-of Prefix with BUT Scheme for Nested Mobile Networks”, accepted by IEEE Trans. on Vehicular Technology, Nov. 2008.
[9] R. Koodi, Ed., “Mobile IPv6 Fast Handover”, IETF RFC 5268, Jun. 2008.
[10] L. Dimopoulou, G. Leoleis and I.O. Venieris, “Fast Handover Support in a WLAN Environment: Challenges and Perspectives”, IEEE Network, Vol. 19, pp. 14-20, May/June 2005.
[11] H. Oh, et al., “An Enhanced Fast Handover Scheme with Temporal Reuse of CoAs and PBP in IPv6-Based Mobile Network”, IEEE Conference on Multimedia and Ubiquitous Engineering, pp. 183-189, Apr. 2007.
[12] S. Ryu and Y. Mun, “Enhanced Fast Handover for Mobile IPv6 based on IEEE 802.11 Network”, Internet Draft: draft-mum-mipshop-efh-fast-mipv6-02.txt, Jun. 2008.
[13] H. Jang, et al., “Mobile IPv6 Fast Handovers Over IEEE 802.16e Networks”, IETF RFC 5270, Jun. 2008.
[14] L. Jang, et al., “Fast Handover Scheme for Supporting Network Mobility in IEEE 802.16e BWA System”, IEEE Wireless Communications, pp. 1757-1760, Sep. 2007.
[15] L. Hai and L. Houda, “Hybrid Handover Optimization for Multiple Mobile Routers-based Multihomed NEMO Networks”, IEEE International Conference on Pervasive Services, pp. 136-144, Jul. 2007.
[16] M.H. Han, K.S. Han, D.J. Lee, “Fast IP Handover Performance Improvements Using Performance Enhancing Proxys between Satellite Networks and Wireless LAN Networks for High-Speed Trains”, IEEE Vehicular Technology Conference, pp. 2341-2344, May 2008.
[17] Y.S. Kim, D.H. Kwon and Y.J. Sun “Seamless Handover Support over Heterogeneous Networks using FMIPv6 with Definitive L2 Triggers”, Wireless Pers Commun, pp. 919-932, Springer, Apr. 2007.
[18] E. Stephane and P. Samuel, “FH-RSVP Scheme for Intra-site Handover in Hierarchical Mobile IPv6 Networks”, Computer Communications, Vol. 30, pp. 416-427, Jan. 2007.
[19] S.J. Yoo and S.J.Shin, “Fast Handover Mechanism for Seamless Multicasting Services in Mobile IPv6 Wireless Networks”, Wireless Personal Communications, pp. 509-526, Springer, 2006.
[20] S. Oh, H. Song and Y. Kim, “Seamless Fast Handover in Mobile IPv4 Using Layer-2 Triggers”, IEEE Second International Conference on Systems and Networks Communications, pp. 25-31, Aug. 2007.
[21] H.Y. Jung, et al., “Fast Handover for Hierarchical MIPv6”, IETF Draft: draft-jung-mobopts-fhmipv6-00.txt, Apr. 2005
[22] R. Li, et al., “An Enhanced Fast Handover with Low Latency for Mobile IPv6” IEEE Transactions on Wireless Communications, Vol. 7, pp. 334-342, Jan. 2008.
[23] H.V. Nguyen, S. Ro and J. Ryu, “Simplified Fast Handover in Mobile IPv6 Networks”, Computer Communications, ELSEVIER, pp. 3594-3603, Jun. 2008.
[24] B. Park and H. Latchman, “Performance Enhancement of Fast Handover for MIPv6 by Reducing Out-of-Sequence Packets”, Wireless Personal Communication, Springer, pp. 207-217, Mar. 2008.
[25] H.V. Nguyen, et al., “A Temporary Binding Update in Fast Handover for Mobile IPv6”, IEEE 2007 International Conference on Covergence Information Technology, pp. 432-437, Nov. 2007.
[26] W.K. Lai and J.C. Chiu, “Improving Handoff Performance in Wireless Overlay Networks by Switching Between Two-Layer IPv6 and One-Layer IPv6 Addressing”, IEEE Journal on Selected Areas in Communications, Vol. 23, pp. 2129-2137, Nov. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔