跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王香媛
研究生(外文):Shiang-Yuan Wang
論文名稱:條件異質變異模型的參數估計--使用經驗概似法
論文名稱(外文):On Estimating the Parameters in Conditional Heteroskedasticity Models by Empirical Likelihood Estimation
指導教授:鄭宗琳鄭宗琳引用關係
指導教授(外文):Tsung-Lin Cheng
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:40
中文關鍵詞:經驗概似法
外文關鍵詞:empirical likelihood
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在時間序列模型中,我們所碰到的幾乎都是非獨立的資料。在不知道母體的分布是什麼的情況下, Owen(1988)所提出的經驗概似法(Empirical Likelihood Estimation)已被廣泛應用在統計獨立的資料,這個方法已被證明優於其他已知的動差方法(Method of Moments)。後來,有一些統計學家試著把經驗概似法應用在非獨立的資料上; 在Kitamura(1997)之後,有許多文章的主題是關於如何把經驗概似法應用在弱相關(weakly dependent)或強相關(strongly dependent)資料上。在這篇論文中,我們將用經驗概似法去估計計量經濟模型的參數,這些模型包括ARCH,GARCH,EGARCH和TGARCH。我們比較了最大概似法或最小平方法與經驗概似法的模擬結果,最後我們利用GARCH模型來配適西德州原油資料,我們發現其結果與假設常態擾動之下最大概似法一致。
In most time series models, the data sets that we might
be confront with are not statistically independent. While the celebrated empirical likelihood (EL) estimation proposed by owen (1988) has been widely used in a framework of independent data without having to know the distribution of the population, it is also challenging to apply EL estimation to the models with dependent data. After Kitamura (1997), there has been a lot of papers focus on
the topic of how to apply EL method to a data set with dependence (short-range dependence or long-range dependence ). In this thesis,we will exploit EL method to estimate the parameters emerging in some important econometrical models including ARCH, GARCH, EGARCH
and TGARCH. In addition, we conduct some illustrative simulations to compare EL approach with other methods of estimation (e.g. MLE and OLS). Finally, we analyze the data of the West Texas Intermediate (WTI) Crude Oil Prices by fitting it into the GARCH model.
1 Introduction 1
2 Survey of Time Series Models and Related Estimations 6
2.1 AR(p) models.................................6
2.2 ARMA Models..................................8
3 Empirical Likelihood Estimation and its Application to EconometricalModels 10
3.1 The ARCH Models.............................10
3.2 The Generalized ARCH Models (GARCH).........17
3.3 The Exponential GARCH Models (EGARCH).......23
3.4 The Threshold GARCH Models (TGARCH).........25
4 Simulation Study And Data Analysis 26
References 35
[1] Bollerslev, T.(1986). Generalized autoregressive conditional heteroskedasticity.
Journal of econometrics 31, 307-327.
[2] Brorsen, B. W.(1995). Maximum likelihood estimation of a GARCHstable
model. Journal of applied econometrics 10, 273-285.
[3] Chan, N. H. andWei, C. Z.(1988). Limiting distributions of least squares
estimates of unstable autoregressive process. Ann. Statist. 16, 367-401.
[4] Chen, S. X.(1993). On the accuracy of empirical likelihood confidence
regions for linear regression models. Ann. Inst. Statist. Math. 45, 621-
637.
[5] Chen, S. X.(1994a). Comparing empirical likelihood and bootstrap hypothesis
tests. J. Multivariate Anal. 51, 277-293.
[6] Chen, S. X.(1994b). Empirical likelihood confidence intervals for linear
regression coefficients. J. Multivariate Anal. 49, 24-40.

[7] Cheng, T. L. and Tsay M. H.(2005). On the GMM estimator for
EGARCH model. Proceedings of the 2nd Sino-International symposium
on probability, statistics, and quantitative management, 171-180.
[8] Chuang C. S. and Chan N. H.(2002). Empirical likelihood for autoregressive
models, with applications to unstable time series. Statist. Sinica 12,
387-407.
[9] Engle, R. F.(1982). Autoregressive conditional heteroscedasticity with
estimates of the variance of United Kingdom inflations. Econometrica
50, 987-1007.
[10] Kolaczyk, E. D.(1994). Empirical likelihood for generalized linear models.
Statist. Sinica 4, 199-218.
[11] Kitamura, Y.(1997). Empirical likelihood methods with weakly dependent
process. The Annals of Statistics 25, 2084-2102.
[12] Monti, A. C.(1997). Empirical likelihood confidence regions in time series
models. Biometrika. 84, 395-405.
[13] Mykland, P. A.(1995). Dual likelihood. Ann. Statist. 23, 396-421.

[14] Nelson, D. B. Conditional heteroskedasticity in asset returns:a new approach.
Econometrica 59, 347-370.
[15] Owen, A. B.(1988). Empirical likelihood ratio confidence intervals for a
single functional. Biometrika 75, 237-249.
[16] Owen, A. B.(1990). Empirical likelihood confidence regions. Ann.
Statist. 18, 90-120.
[17] Owen, A. B.(1991). Empirical likelihood for linear models. Ann. Statist.
19, 1725-1747.
[18] Owen, A. B.(1992). Empirical likelihood and generalized projection pursuit.
Technical Report 393, Dept. Statistics, Stanford Univ.
[19] Qin, J. and Lawless, J.(1994). Empirical likelihood and general estimating
equations. Ann. Statist. 23, 300-325.
[20] Qin, J. and Lawless, J.(1995). Estimating equations, empirical likelihood
and constraints on parameters. Canad. J. Statist. 23, 300-325.
[21] Weiss, A.(1986). Asymptotic theory for ARCH models. Econometric theory
2, 107-131.

[22] Zakoian, J. M.(1994). Threshold heteroscedastic models. Journal of economic
dynamics and control 18, 931-955.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top