跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李曄
研究生(外文):Ye Lee
論文名稱:新型共平面波導接地面缺陷結構帶止濾波器
論文名稱(外文):Novel Coplanar-Waveguide Defected-Ground-Structure Band-Stop Filters
指導教授:賴永齡賴永齡引用關係
指導教授(外文):Yeong-Lin Lai
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:123
中文關鍵詞:共平面波導接地面缺陷結構帶止型濾波器電磁能隙慢波因子
外文關鍵詞:Coplanar waveguideDefected ground structureBand-stop filtersElectromagnetic bandgapSlow wave factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用共平面波導接地面缺陷結構(Coplanar Waveguide Defected Ground Structure, CPWDGS)來設計新型帶止型濾波器的單位元件及週期性結構。
本論文提出新型共平面波導接地面缺陷結構帶止型濾波器,利用其特殊的幾何結構,使其產生禁、通帶範圍,並且討論分析其幾何結構之各物理尺寸參數與特性變化對其頻率的影響。
對電磁能隙的新型共平面波導接地面缺陷結構之週期性結構,分析討論其改變不同的情況下之影響。由單位元件的慢波因子來預測其週期性結構的通、禁帶範圍,並從實驗結果中來證實由單位元件的慢波因子可預測週期性結構通、禁帶的範圍。這使設計者不需耗費大量的時間與電腦資源,而能有效且快速的預測新型共平面波導接地面缺陷結構之週期性電路特性。


關鍵字:共平面波導、接地面缺陷結構、帶止型濾波器、電磁能隙、慢波因子
The thesis uses coplanar waveguide defected ground structure (CPW DGS) to design new band-stop filters of unit-cell and periodic structures.
The thesis proposes novel CPW DGS band-stop filters. The special geometry structures of the filters produce cut-off and pass band ranges. We discuss the influence of the geometric structure parameters of the physical size on the frequency characteristics.
In this thesis, the periodic coplanar waveguide defected ground structures with electromagnetic bandgap (EBG) characteristics are analyzed under different circumstances. The periodic structures in cut-off and pass band ranges can be predicted by the slow wave factor of the unit cell. This is proved by the experiment results. The results of the thesis provide an effective and rapid prediction for designers without spending a lot of time and computer resources.


Keyword:Coplanar waveguide, Defected ground structure, Band-stop filters, Electromagnetic bandgap, Slow wave factor
目錄
摘要 Ⅰ
Abstract Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅸ
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 論文架構 2
第二章 相關內容理論簡介 4
2-1 共平面波導結構簡介 4
2-2 接地面缺陷面結構簡介 5
2-3 電磁能隙與光子能隙 5
2-4 無限長週期性結構理論 6
2-5 κ-β圖與慢波傳播 10
2-6 S參數 11
第三章 十字複合形頭共平面波導接地缺陷結構 13
3-1 十字複合形頭共平面波導接地缺陷結構 13
3-2 十字複合頭型單位元件等效電容電感電路集總元件值計算 23
3-3 十字複合頭型單位元件電路設計之實驗結果與模擬分析 23
3-4 成品實作、模擬結果與量測數據之比較 55
第四章 十字複合型之週期性結構 71
4-1 十字正方形頭實驗 71
4-1-1 十字正方形頭週期性結構之討論分析 71
4-1-2 十字正方形頭單位元件改變串接個數之影響 72
4-1-3 十字正方形頭單位元件改變串接距離d之影響 73
4-1-4 十字正方形頭改變單位元件之W,產生不同共振頻率之影響 74
4-2 十字圓形頭實驗 80
4-2-1 十字圓形頭週期性結構之討論分析 80
4-2-2 十字圓形頭單位元件改變串接個數之影響 81
4-2-3 十字圓形頭單位元件改變串接距離d之影響 82
4-2-4 十字圓形頭改變單位元件之W,產生不同共振頻率之影響 83
4-3 十字等腰直角三角形頭實驗 89
4-3-1 十字等腰直角三角形頭週期性結構之討論分析 89
4-3-2 十字三等腰直角角形頭單位元件改變串接個數之影響 90
4-3-3 十字等腰直角三角形頭單位元件改變串接距離d之影響 91
4-3-4 十字等腰直角三角形頭改變單位元件之W,產生不同共振頻率之影響 92
4-4 成品實作、模擬結果與量測數據之比較 98
第五章 單位元件傳播常數與慢波因子對週期性結構分析討論 110
5-1 單位元件之傳播常數與週期性構的禁、通帶關係 110
5-2 單位元件之傳播常數分析週期性結構的禁、通帶 110
第六章 結論 120
參考文獻 121
[1] D. Drolet, A. Panther, C. J. Verver, K. Kautio,and Y.-L. Lai, “Ka-band direct transmitter modules for baseband pre-compensation,” in Proc. 35th European Microwave Conf., Paris, France, Oct. 2005, pp. 673–676.
[2] Y.-L. Lai and C.-H. Chang, “Microwave filters with novel CPW periodic structures,” in Proc. Progress in Electromagnetics Research Symp., Aug. 2004.
[3] C.-P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory and Tech. vol. 17, no 12, pp. 1087–1090, Dec. 1969.
[4] Y.-L. Lai and P.-Y Cheng, “CPW filters with defected ground structures for RF and microwave applications,” in Proc. 9th Joint Conf. on Information Sciences, Kaohsiung, Taiwan, Oct. 2006, pp. 1336–1339.
[5] Y.-L. Lai and P.-Y Cheng, “Novel silicon-based microwave bandstop filters for communication systems,” in Proc. 9th Joint Conf. on Information Sciences, Kaohsiung, Taiwan, Oct. 2006, pp. 1393–1396.
[6] Y.-L. Lai and P.-Y Cheng, “Design and analysis of coplanar-waveguide filters,” in Proc. 1st Intelligent Living Technology Symp. (ILT 2006), Taichung, Taiwan, Jun. 2006, pp. 264–269.
[7] A. Balalem, A. R. Ali, J. Machac, and A. Omar, “Compact band-stop filter using an interdigital DGS structure,” in Proc. 14th Conf. on Microwave Techniques (COMITE 2008), Prague, Czech Republic, Apr. 2008, pp. 1–3.
[8] S. A. Boutejdar, A. Elsherbini, and A. S. Omar, “A new numerical method to improve the stopband of compact lowpass filter employing defected ground structure (DGS),” in IEEE AP-S Int. Symp. Dig., Honolulu, HI, June 2007, pp. 1553–1556.
[9] S. Visan, O. Picon, and V.-F. Hanna, “3D characterization of air bridges and via holes in conductor-backed coplanar waveguides for MMIC applications,” in IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, June 1993, pp. 709–712.
[10]V. Radisic, Y. Qian, and T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave and Guided Wave Lett., vol. 8, no. 1, pp. 13–14, Jan. 1998.
[11]S.-C. Lin, C.-H. Wang, and C.-H. Chen, “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 1, Jan. 2007, pp. 137–146.
[12]T.-Y. Yun and K. Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 549–553, Mar. 2001.
[13]M. F. Karim, A. Q. Liu, A. Alphones, X. J. Zhang, and A. B. Yu, “CPW band-stop filter using unloaded and loaded EBG structures,” IEE Proc.-Microw. Antennas Propag., vol. 152, no. 6, pp. 434–440, Dec. 2005.
[14]J.-W. Baik, S.-M. Han, J. Chandong, J. Jichai, and Y.-S. Kim, “Compact ultra-wideband bandpass filter with EBG structure,” IEEE Microwave Wireless Comp. Lett., vol. 18, no. 10, pp. 671–673, Oct. 2008.
[15]D.-J. Woo, T.-K. Lee, J.-W. Lee, C.-S. Pyo, and W.-K. Choi, “Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2840–2847, June 2006.
[16]W.-G. Lim, W.-K. Kim, D.-H. Shin, and J.-W. Yu, “A novel bandstop filter design using parallel coupled line resonators,” in Proc. 37th European Microwave Conf., Munich, Germany, Oct. 2007, pp. 878–881.
[17]Y. Maohui, J. Xu, D. Yuliang, Y. Mengxia, and L. Guiping, “A novel open-loop DGS for compact bandstop filter with improved Q factor,” in Proc. 8th Int. Symp. on Antennas, Propagation and EM Theory (ISAPE 2008), Kunming, China, Nov. 2008, pp. 649–652
[18]D. M. Pozar, “Microwave Engineering,” chap.8, New Yourk: John Wiley & Sons, 2nd Ed., 1998
[19]袁帝文,王岳華,謝孟翰,王弘毅, “高頻通訊電路設計,” 高立圖書有限公司, 2007。
[20]J.-S. Park, J.-H. Kim, J.-H. Lee, “A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter,” in IEEE MTT-S Int. Microwave Symp. Dig, Seattle, WA, pp. 417–420, June 2002.
[21]Z.-F. Li, H-.W. Liu, X.-W. Sun, “A novel fractal defected ground structure and its application to the low-pass filter, ”Microwave and Optical Technology Letters, vol. 39, pp. 453–456, May 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top