|
參考文獻 [1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., vol. 25, pp. 676–677, 1954. [2] D. E. Carlson, “Amorphous silicon solar”, IEEE Trans. Electron Dev., vol. 24, pp. 449–553, 1977. [3] APSYS by Crosslight Software, Inc., Burnaby, Canada, (2007) [Online]. Available: http://www.crosslight.com [4] S. O. Kasap, Photovoltaic devices, in: S. O. Kasap (Eds), Optoelectronics and photonics: principles and practices, New Jersey: Prentice-Hall, 2001, pp. 254274. [5] F. A. Lindholm and C.-T. Sah, “Fundamental electronic mechanisms limiting the performance of solar cells”, IEEE Trans. Electron Dev., vol. 24, pp. 299–304, 1977. [6] K.C. Sahoo,董福慶,楊宗熹,張翼,「三五族材料太陽能電池的回顧」,機械工業雜誌,第278期,第1626頁 (2006)。 [7] 原著/S. O. Kasap,編譯/黃俊達,陳金喜,楊奇達,雷伯勳,「光電子學學與光子學原理與應用:第六章 光伏元件」,全威出版社,台北 (2003)。 [8] http://zh.wikipedia.org/w/index.php?title=File:Lattice_face_centered_cubic.svg&variant=zh-tw 維基百科。 [9] 總編輯/黃惠良,曾百亨,作者/黃惠良,蕭錫錬,周明奇,林堅楊,江雨龍,曾百亨,李威儀,李世昌,林唯芳,「太陽能電池︱Solar Cells」,五南出版社,台北 (2008)。 [10] 施敏,「半導體元件物理與製作技術」,交大出版社,台北 (2002)。 參考文獻 [1] 蔡進譯,「超高效率太陽能電池-從愛因斯坦的光電效應談起」,物理雙月刊,第27卷第5期,第701719頁 (2005)。 [2] http://www.solarpv.org.tw/aboutus/sense/principle.asp 太陽光電資訊網。 [3] S. N. Mohammad and S. T. H. Abidi, “Theory of saturation photocurrent and photovoltage in p-n junction solar cells”, J. Appl. Phys., vol. 61, pp. 49094919, 1987. [4] 施敏,「半導體元件物理與製作技術」,交大出版社,台北 (2002)。 [5] 林明獻,「太陽能電池技術入門」,全華出版社,台北 (2009)。 [6] 原著/S. O. Kasap,編譯/黃俊達,陳金喜,楊奇達,雷伯勳,「光電子學學與光子學原理與應用:第六章 光伏元件」,全威出版社,台北 (2003)。 [7] K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5%-efficient GalnP/GaAs tandem solar cells”, Appl. Phys. Lett., vol. 65, pp. 989–991, 1994. [8] I. M. Dharmadasa, “Third generation multi-layer tandem solar cells for achieving high conversion efficiencies”, Solar Energy Materials & Solar Cells, vol. 85, pp. 293–300, 2005. [9] S. O. Kasap, Photovoltaic devices, in: S. O. Kasap (Eds), Optoelectronics and photonics: principles and practices, New Jersey: Prentice-Hall, 2001, pp. 254274. [10] M. Yamaguchi, The past and present, in: M. D. Archer, R. Hill (Eds.), Clean electricity from photovoltaics, London: Imperial College Press, 2001, pp. 130. 參考文獻 [1] T. Takamoto, M. Yamaguchi, S. J. Taylor, M.-J. Yang, E. Ikeda, and H. Kurita, “Radiation resistance of high-efficiency InGaP/GaAs tandem solar cells”, Solar Energy Materials & Solar Cells, vol. 58, pp. 265276, 1999. [2] K. A. Bertness, S. R. Kuvtz, D. J. Friedman, A. E. Kibbler, C.Kramer, and J. M. Olson, “29.5-efficient GaIn/GaAs tandem solar cells”, Appl. Phys. Lett., vol. 65, pp. 989991, 1994. [3] F. Dimroth, “High-efficiency solar cells from III-V compound semiconductors”, Phys. Stat. Sol., vol. 3, pp. 373379, 2006. [4] J. M. Roman, “State-of-the-art of III-V solar cell fabrication technologies”, Device Designs and Applications, vol. 548, pp. 18, 2004. [5] S. Panyakeow, “Three decades of semiconductor research for solar cell applications in Thailand”, Technical Digest of the International PVSEC, vol. 15, pp. 461463, 2004. [6] M. Abderrazak, F. Djahlim, and K. Kemih, “Optimization of GaInP solar cell performance”, International Journal of Electrical and Power Engineering., vol. 1, pp. 172176, 2007. [7] L. Fraas, J. Avery, V. Sundaram, V. Dinh, and T. Davenport, “Tandem solar cells with 31% (AM0) and 37% (AM1.5D) energy conversion efficiencies”, IEEE AES Magazine., pp. 1–9, 1989. [8] T. Takamoto, E. Ikeda, and H. Kurita, “Over 30% efficient InGaP/GaAs tandem solar cells”, Appl. Phys. Lett., vol. 70, pp. 381383, 1997. [9] 原著/S. O. Kasap,編譯/黃俊達,陳金喜,楊奇達,雷伯勳,「光電子學學與光子學原理與應用:第六章 光伏元件」,全威出版社,台北 (2003)。 參考文獻 [1] J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, “High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction”, Appl. Phys. Lett., vol. 91, pp. 023502-1023502-3, 2007. [2] J. F. Geisz, S. R. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “Inverted GaInP/ (In)GaAs/InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions”, 33rd IEEE Photovoltaic Specialists Conference, 2008. [3] D. J. Friedman and S. R. Kurtz, “Breakeven criteria for the GaInNAs junction in GaInP/GaAs/GaInNAs/Ge four-junction solar cells”, Prog. Photovolt: Res. Appl., vol. 10, pp. 331344, 2002. [4] K. Tanabe, D. J. Aiken, M. W. Wanlass, A. F. i Morral, and H. A. Atwater, “Lattice-mismatched monolithic GaAs/InGaAs two-junction solare cells by direct wafer bonding”, 2006 IEEE, vol. 6, pp. 768771, 2006. [5] S. Bharatan, S. Iyer, K. Nunna, W. J. Collis, K. Matney, J. Reppert, A. M. Rao, P. R. C. Kent, “The effects of annealing on the structural, optical, and vibrational properties of lattice-matched GaAsSbN/GaAs grown by molecular beam epitaxy”, J. Appl. Phys, vol. 102, pp. 023503-1023503-9, 2007. [6] N. Szabó, B. E. Sağol, U. Seidel, K. Schwarzburg, and T. Hannappel, “InGaAsP/InGaAs tandem cells for a solar cell configuration with more than three junctions”, Phys. Stat. Sol., vol. 2, pp. 254256, 2008. [7] Z. Q. Li, Y. G. Xiao, and Z. M. S. Li, “Two-dimensional simulation of GaInP/GaAs/Ge triple junction solar cell”, Phys. Stat. Sol. (c), vol. 4, pp. 16371640, 2007.
|