丁亞中(1992)數化像片幾何修正之空間精度推估,測繪工程第39卷4期,頁11-20。
王子定 (1978) 不同齡級柳杉林樹木生物量之測定 中華農學會報 新102:59-76。
李定忠(2003)整合GPS與GIS技術於林木樣區調查與林分生產力之研究。國立嘉義大學林業研究所碩士論文。21-59頁。林永發(2000)雪霸國家公園生物多樣性保育策略。環境教育季刊42: 49-58。林金樹(1988)空載多譜掃描資訊測估柳杉林分生物量之研究。國立台灣大學森林學研究所碩士論文。109頁。林金樹(1996a)都會區土地利用變數結構之研究-以台南為例。中華林學季刊。29(2):79-92。林金樹(1996b)利用脊路徑分析法探討土地利用變數結構之研究。中華林學季刊。29(2):59-78。林金樹(1998)森林植被與地形因子對TM光譜資訊影響之研究。航測及遙測學刊。3(4):15-36。林金樹 (1999a) 森林植生季節性光譜特性之研究。台灣林業科學14(3):289-305。
林金樹(1999b)TM SAVI修正因子最適值與林分密度估測之研究。中華林學季刊。32(3):333-346。林金樹(2005)空間資訊科技在森林資源與保育經營上之應用。森林資源與保育研討會。
林金樹、蔡正一(2005)應用福衛2號多譜影像辨識林區土地利用型之研究。中華林學會94年度學術論文發表會論文集。
林世宗 (1989) 不同栽植距離下柳杉林分生長及其養分動態之研究。 台大森林所博士論文。林務局(1995)第三次臺灣森林資源及土地利用調查。
林俊雄 (2006) 結合QB光譜與組織特徵於樹種分類。國立嘉義大學林業暨自然資源研究所碩士論文。101頁。吳政庭 (2004) 多元尺度影像與半變異元紋理法於都市水稻田分類之研究。逢甲大學土地管理學系碩士班碩士論文。75頁。徐天蜀(2008)基於遙感資訊的森林生物量、碳儲量估測技術研究。林業調查規劃。第3卷。
徐新良、曹明奎(2006)森林生物量遙感估算與應用分析。地球資訊科學。8卷4期。
國立中央大學太空及遙測研究中心網站(http://www.csrsr.ncu.edu.tw/08CSRWeb/ChinVer/C6TechSupp/Optical/Landsat.php)
陳朝圳(1993)地理資訊系統應用於霧頭山自然保護區植群分類之研究。遙感探測。18:24-53。
陳朝圳、鍾玉龍 (2003) 應用遙感探測於墾丁國家公園計畫各分區長期植群生態變遷之調查與研究。國家公園學報13(2):85-102。
陳承昌、史天元、劉進金(2005)以不同時期SPOT影像輻射改正之研究。第二十四屆測量學術及應用研討會:457-464頁。
郭幸榮 徐新武 張照群 游啟皓 游智偉 張恆顥 鍾年均 翁世豪 (2005) 柳杉人工林生物量及碳貯存量之估算-以觀霧地區為例。 森林經營對二氧化碳吸存之貢獻研討會論文集 23-35頁。
楊龍士、周天穎(2000)遙感探測理論與分析實務。逢甲大學地理資訊系統研究中心。312頁。
嘉義林區管理處(2005)嘉義林區森林經營計畫。17頁
蔡正一(2006)應用福衛2號多譜衛星影像辨識林區土地利用型之研究。國立嘉義大學林業暨自然資源研究所碩士論文。93頁。蔡文龍(2005)福衛二號影像糾正及誤差探討。國立成功大學測量及空間資訊學系碩士論文。齊志新、鄧孺孺(2007)多暗像元大氣較正方法。國土資源遙感。第2卷。
鄭祈全、許立達、陳燕章(1998)整合地理資訊系統與遙測技術於林分材積估測之研究。台灣林業科學。13(2):155-167。
劉小平、餘前、蔡槿(2004)一種實用大氣校正法及其在TM影像中的應用。中山大學學報論叢。3:297-300。
劉孝恆(1998)監督性模糊分類法於遙測影像分類及變遷偵測之研究。國立中央大學土木工程研究所碩士論文。68頁。劉棠瑞與蘇鴻傑(1983)森林植物生態學。臺灣商務印書館。462頁。
謝漢欽(1992)多譜掃描資訊於柳杉林分樹冠鬱閉度及材積推估功效上之研究。國立台灣大學森林學系研究所博士論文。謝漢欽(1998)SPOT綠度與森林生育地因子於台灣杉材積推估之探討。台灣林業科學。123(3):175-188。
魏浚紘(2007)應用空載光達推估阿里山地區柳杉人工林林分材積。國立屏東科技大學森林系研究所碩士論文。94頁。Avery, T. E. and G. L. Berlin, (1992) Fundamentals of Remote Sensing and Airphoto Interpretaton.(fifth edition). Prentice-Hall, Upper Saddle River,New Jersey07458.
Borge, N. H. and E. Leblanc, (2000) Comparing prediction power andstability of broadband and hyperspectral vegetation indices for estimation of green lesf area index and canopy chlorophyll density.
Congalton, R. G. (1991) A review of assessing the accuracy of classifications ofremotely sensed data. Remote Sensing of Environment 37: 35-46.
Congalton, R. G. and M. Story, (1986) Accuracy assessment: a user's perspective. Photogrammetric Engineering and Remote Sensing 55(9): 1303-1309.
Cracknell, A. P. and L. W. B. Hayes, (1991) Introduction to remote sensing. Tayler & Francis. p293.
Culvenor, D.S. (2002) TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Computers & Geosciences 28: 33-44.
Danilin, I. M., and E. M. Medvedev, (2004) Forest inventory and biomass assessment by the use of airborne laser scanning method (eLPIample from Siberia). International Archives of Photogrammety. Remote Sensing and Spatial Information Sciences 36(8): 139-144.
Deering, D. W., J. W. Rouse, R. H. Haas, and J. A. Schell, (1975)Measuring forest production of grazing units from Landsat MSS data. In proceedings, 10th International Symposium of Remote Sensing of Environment 2: 1169-1178.
DeLucia, E. H., K. Nelson, T. C. Vogelmann, and W. K. Smith, (1996) Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant Cell and Environment 19(2): 159–170.
Fish U. S. and S. Wildlife, (1990) The first national U.S. fish and wildlife service geographic information systems workshop. June 4-7, 1990. 242pp.
Gausman, H. W. (1982) Visible light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sensing of Environment 13: 233-238.
Gemmel, F. (1998) An investigation of terrain effects on the inversion of a forest reflectance model. Remote Sensing of Environment 65(2): 155–169.
Goetz, A. F. H., Rock, B. N. and Rowan, L. C. (1983) Remote sensing forexploration and an overview: Econmoic Geology 79: 573 - 590.
Goodenough, D. G. (1986) The Intergration of Remote Sensing and Symp On Remote Sensing for Resources Development and Environmental Management. Blakema,Rotterdam pp.1015-1028.
Gougeon, F.A. (1995) A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution digital images. Canadian Journal of Remote Sensing 21(3): 274–284.
Heit, M. and A. Shortreid (1991) GIS Application in Natural Resources, GIS World. Inc, Fort Collins, Colorado. 381pp.
Huete, A. R. (1988) A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment 25: 295-309.
James, B. C. (2002) Introduction to remote sensing third edition, Taylor &Francis, 5-11. 127.
Jensen, J. R. (2005) Introductory digital image processing third edition. N. :Prentice-Hall.pp186-188.p205.pp301-314.
Jonathan A. G., Z. D. Solomon, and L. U. Susan, (2005) Shadow allometry: Estimating tree structural parameters using hyperspatial image analysis. Remote Sensing of Environment 97:15-25.
Jordan, C. F. (1969) Derivation of leaf area index from quality of light on the forest floor. Ecol 50: 663-666.
Kramer P. J. and T. T. Kozlowski, (1979) Physiology of woody plants. New York: Academic Press. 811.
Larsen, M. (1998) Finding an optimal match window for Spruce top detection based on an optical tree model. In: Hill, D.A., Leckie, D.G. (Eds.), Proceedings Automated Interpretation of High Spatial
Lillesand, T. M. and R. W. Kiefer, (2000) Remote sensing and image interpretation, Wiley & Sons, New York,p724.
Lillesand, T. M., and R. W. Kiefer (1994) Remote sensing and image interpretation,third edition. John Wiley & Sons, Inc., New York, New York.
Li, X., A. H. Strahler (1992) Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape on mutual shadowing. IEEE Transactions on Geosciences and Remote Sensing 30(2): 276–291.
Næsset, E. and B. Kjell-Olav (2001) Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sensing of Enviroment 78: 328-340.
Philip, H. S. and M. D. Shirley, (1978) Remote Sensing:The Quantitative Approach Mc Graw-Hill Book Company.
Pollock, R. (1996) The Automatic Recognition of Individual Trees In Aerial Images of Forests Based On A Synthetic Tree Crown Image Model. PhD Dissertation, Department of Computer Science, University of British Columbia. Vancouver, Canada. 172pp.
Quattrochi, D. A., Pelletier, R. E. (1991) omote sensing for analysis oflandscapes: An introduction. In: Turner M. G.,Gardner R. H., ed.Quantitative Methods in Lamdscape Ecology: The Analysis and Interpretation of Landscape Heterogeneity, New York: Springer-Verlag. 51~76.
Richardson, A. J., and C. L. Wiegand, (1977) Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens 43: 1541-1552.
Ripple, W. J. (1986) Geographic Information System for Resource Management: A Compendium. American Society for Photogrammetry and Remote Sensing.287pp.
Robert, A. S. (1983) Techniques for Imagine Processing and Classification in Remote Sensing. Academic Press.
Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, (1973) Monitoring vegetation systems in the Great Plains with ERTS, in proceedings. Third ERTS Symposium 1: 48-62.
Schieh, H. C., (1992)Studies on the application of MSS data in the stand crown-closure and volume estimate of Cryptomeria [DPhil theses]. Taipei, Taiwan: National Taiwan University. p166.
Stefanie, H. (2002) Mapping Eucalyptus Canopy Dieback in the Dandenong Ranges National Park. University of Stuttgart, Stuttgart, Germany. 130.
Stone, C., L. Chisholm, and N Coops, (2001) Spectral reflectance characteristics of eucalypt foliage damaged by insects. Australian Journal of Botany 49: 687-698.
Tucker, C. J. (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 8: 127-150.