[1] Connolly JL, Fechner RE, Kempson RL, et al: Recommendations for the reporting of breast carcinoma. Association of directors of anatomic and surgical pathology. Human Pathol. 1996; 27: 221-4.
[2] Fitzgibbons PL, Conolly JL, Page DL: Updated protocol for the examination of specimens from patients with carcinomas of the breast. A basis for checklist. Arch Pathol Lab Med. 2000; 124: 1026-33.
[3] Latson L, Sebek B, Powell KA. “Automated cell nuclear segmentation in color images of hematoxylin and eosin-stained breast biopsy,” Anal. Quant. Cytol. Histol. 2003 Dec:25(6):321-31.
[4] E.J. Kaman, A.W.M. Smeulders, P.W. Verbeek, I.T. Young, and J.P.A. Baak. “Image Processing for Mitoses in Sections of Breast Cancer: A Feasibility Study,” Cytometry pp.1-6, 1984.
[5] Kate T.K., Belien J.A.M., Semulders A.W., and Baak J.P.A, “Method for counting mitosis by image processing in Feuglen stained breast cancer sections,” Cytometry Vol. 14, pp. 241-250, 1993.
[6] Yang, J. and J. Y. Yang, "Why can LDA be performed in PCA transformer space," Rapid and Brief Communication on Pattern Recognition, pp.563-566, 2003.
[7] Belien J.A.M., Baak J.P.A, Van diest P.J., and Van Ginkel A.H.M, “Counting mitosis by image processing in Feuglen stained breast cancer sections:the influence of resolution,” Cytometry, Vol. 28, pp. 135-140, 1997.
[8] H. Refai, T. K. Teague, “Automatic Count of Hepatocytes In Microscopic Images,” Image Processing, ICIP 2003. Proceedings. 2003 International Conference on Volume 2, 14-17 Sept. 2003 Page(s): II - 1101-4 vol.3.
[9] Elston CW, Ellis IO: Pathologic factors in breast cancer. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991; 19: 404-10.
[10] G. Paschos, “Perceptually uniform color spaces for color texture analysis: an empirical evaluation,” IEEE Transactions on Image Processing, Vol.10, No.6, June 2001, pp 932-937.
[11] N. Otsu, “A Threshold Selection Method from Gray-Level Histogram,” IEEE Trans. System Man Cybernetics, SMC-9(1): no.1, 1979, pp 62-66.
[12] Thomas Dietterich, “Introduction to Machine Learning,” Ethem Alpaydin, 2004.
[13] Wu, H.-S. Barba, J. Gil, J., “Region growing segmentation of textured cell images,” Journal, Vol.32, No.6, June 1996, pp 1084-1085.
[14] J.M. Park, C.G. Looney and H.C. Chen, “Fast Connected Component Labeling algorithm Using A Divide and Conquer Technique,” Conference on Computers and Their Applications, 2000, pp 373-376.
[15] Milan Slnka, Vaclac Hlavac, Roger Boyle, “Image Processing Analysis and Machine Vision,” 1997, pp 177-181.
[16] R.C. Gonzalez and R.E. Woods, “Digital image processing, 2ed,” Massachusetts: Addison Wesley, 2002.
[17] Zhung and Suen(T.Y. Zhang and C.Y. Suen, “A fast parallel algorithm for thinning digital pattern,” Communications of the ACM, Vol. 27, No. 3, pp. 236-239,1984.
[18] K. Haris, S.N. Efstratiadis, and N. Maglaveras (1998) “Watershed-based image segmentation with fast region merging,” in Proceedings of the IEEE International Conference on Image Processing, vol. 3, pp. 338-342.
[19] L. Vincent and P. Soille (June 1991) “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Trans. On Pattern Anal. Machine Intell., vol. 13, no. 6, pp. 583–598.
[20] K. Haris and S.N. Efstratiadis (Dec. 1998) “Hybrid image segmentation using watersheds and fast region merging” IEEE Trans. on Image Processing, Vol. 7, No. 12, pp. 1684-1699.
[21] Chen Pan, Cong-Xun Zheng, and Hao-Jun Wang, “Robust color image segmentation based on mean shift and marker-controlled watershed algorithm,” Second International Conference on Machine Learning.
[22] S. Taylor, N.C.a.J., An Introduction ro Support Vector Machines and Other Kernel-based Learning Methods. 2000: Cambridge University Press.
[23] D.F. Specht, “Probabilistic Neural Network for Classification, Mapping, or Associative Memory,” IEEE Int Conference. Neural Network, San Diego, CA, Vol.1, July 1988, pp 525-532.
[24] Ethem Alpaydin, Introduction to Machine Learning, October 2004, pp 39-58.
[25] Parzen, E. , “ On Estimation of a Probability Density Function and Mode,” Annuals of Mathematical Statistics,1962, pp 1065-1076.
[26] Specht,D. F., “Probabilistic Neural Networks (original contribution) ”,Neural Networks .vol.3,no.1 Jan 1990,pp. 109-118.
[27] The Eurographics Association and Blackwell Publishing, Computer Graphics Forum, Vol.23 Issue 3, pp 271-279.
[28] A. Rosenfeld and E. Johnston, “An improved method of Angle Detection on Digital Curves”, IEEE Transaction on Computers, Vol. C-22, 1973, pp 875-878.
[29] J.M. Thijssen, B.J. Oosterveld, and R.F. Wagner, “Gray level transforms and lesion detectability in echographic images,” Ultrason. Imaging, vol.10, no.3, pp. 171-195, July, 1995.
[30] 朱娟秀,”乳癌病理診斷”,台灣醫學第五卷第五期,P.552-556,2001。[31] 馮齡儀, ”電腦輔助子宮頸抹片異常細胞辨識之初期研究”,中原大學醫學工程研究所碩士論文,2004。[32] 楊勝智, ”乳房醫學影像之腫瘤電腦輔助診斷系統”,國立成功大學電機工程學系博士論文,2006。[33] 張祐育,”子宮內膜異位症之組織影像特徵參數分析”,南台科技大學電機工程研究所碩士論文,2004。[34] 林俊志,”以細胞學及影像處理技術分析乳房腫瘤”,國立嘉義大學資訊工程所碩士論文,2007。[35] 許迪程,”乳癌免疫組織化學染色細胞分割與判讀”,國立嘉義大學資訊工程所碩士論文,2007。[36] 林儀信,”以組織學為基礎之乳癌細胞分割及辨識”, 國立嘉義大學資訊工程所碩士論文,2006。[37] 乳癌治療相關因子,財團法人天主教耕莘醫院檢驗科,李麗秀、侯惠真。
[38] 鐘國亮,”影像處理與電腦視覺”,東華書局,2002。