跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志翔
研究生(外文):Chih-Hsiang Chen
論文名稱:滿足舒適騎乘需求之輕型電動載具強化學習助力管理機制
論文名稱(外文):A Reinforcement Learning Based Power Assisted Mechanism with Comfort of Riding For Light Electric Vehicle
指導教授:徐超明徐超明引用關係
指導教授(外文):Chaoming Hsu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:輕型電動載具助力管理機制強化學習舒適騎乘
外文關鍵詞:Light Electric VehiclePower Assisted MechanismReinforcement LearningComfort of Riding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本文中,我們提出了一個適用於輕型電動載具(Light Electric Vehicle)的強化學習的助力管理機制。近年來,各國將輕型電動載具視為重點發展的項目,作為現有傳統依賴燃油動力汽機車的替代品,減少對有限能源的依賴度。輕型電動載具的電動助力一般乃根據騎乘者腳踏扭力來觸發,當騎乘者踩動踏板時,助力管理系統就會給予電動助力。本研究提出一個滿足舒適騎乘需求(Comfort of riding)之輕型電動載具強化學習助力管理機制,能根據環境變化,適應性的給予騎乘者適當的電動助力,減少不適當的電動助力導致的行駛不穩定性,並能滿足騎乘者舒適騎乘的需求(comfort of riding),使輕型電動載具能在一舒適區間(Comfortable Zone)行駛。經由實驗模擬證實,相較於不具適應性與一般的助力管理機制,本研究所提出的強化學習助力管理機制架構,在滿足舒適騎乘的需求的情況下,同時擁有較好的能源利用度,也使騎乘者騎乘時具有更高的便利性。
In this thesis, a reinforcement learning based power assisted mechanism is proposed for Light Electric Vehicle(LEV), which is an electrical bicycle driven by a human’s pedal force and electric motor. The proposed mechanism adaptively choose appropriate assisted power according to the environmental changes. By adaptively adjusting the assisted power after learning for LEV, not only energy utilization is improved but comfort of riding for pedalist is also satisfied. Simulations of proposed mechanism on LEV powered by battery are performed. Experimental results demonstrate that the proposed mechanism satisfies the requirement of comfort of riding and achieve better energy utilization by comparing with other conventional power assisted mechanism.
中文摘要 ii
Abstract iii
致謝 iv
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 研究背景 1
1.2 問題描述 3
1.3 研究貢獻 3
1.4 章節架構 4
第2章 相關研究 5
2.1 輕型電動載具 5
2.2 傳統助力管理機制 7
2.3 騎乘環境阻力分析 11
2.4 強化學習理論 14
第3章 研究架構 21
3.1 前言 21
3.2 電動助力車助力管理架構 22
3.3 強化學習助力管理機制 26
第4章 系統模擬與實驗結果 35
4.1 模擬設置 35
4.2 比較方法與參數 45
4.3 實驗結果與討論 47
第5章 結論與未來工作 94
5.1 結論 94
5.2 未來工作 94
附錄 95
參考文獻 98
[1] 國際能源機構, International Energy Agency , http://www.iea.org/.
[2] J. Aoki and T. Murakami, “A method of road condition estimation and feedback utilizing haptic pedal,” Advanced Motion Control, AMC '08. 10th IEEE International Workshop, pp.777-782, March 2008.
[3] Kumar, B. and Oman, H. “Power control for battery-electric bicycles,” Aerospace and Electronics Conference, 1993. NAECON 1993., Proceedings of the IEEE 1993 National Vol.1, pp.428-434 May 1993.
[4] A. Muetze and Y.C. Tan, “Electric bicycles - A performance evaluation,” IEEE Industry Applications Magazine, Vol. 13, Issue 4, pp. 12-21 July-Aug. 2007.
[5] K.T. Ulrich, “Estimating the Technology Frontier for Personal Electric Vehicles,” Transportation Research part C. Vol. 13, pp. 448-462, Oct. 2005.
[6] 電動車輛產業網, http://proj.moeaidb.gov.tw/lev/Policy/.
[7] 道路交通安全規則,http://law.moj.gov.tw/Scripts/Query4B.asp?FullDoc=所有條文&Lcode=K0040013.
[8] Bionx, http://www.bionx.ca/index.php.
[9] 必翔電動自行車, http://www.pihsiang.com.tw.
[10] 日本電動自行車管理條例, http://www.cctv.com/electric/20070929/104087.shtml.
[11] D.G. Wilson, J. Papadopoulos, and F.R. Whitt, Bicycling Science. Cambridge, Mass: MIT Press, 2004.
[12] W.C. Morchin, “Battery-powered electric bicycle,” in Proc. Nortbcon’94, pp.269-274 , Oct.1994.
[13] S. Brand and N. Ertugrul, and W. Soong, “Investigation of An Electric Assisted Bicycle and Determination of Performance Characteristics,” Australasian Universities Power Engineering Conference, No.116, Oct. 2003.
[14] E.A. Lomonova, A.J.A. Vandenput, J. Rubacek, B.d’Herripon, and G Roovers, “Development of an improved electrically assisted bicycle,” Proceedings of 37th IEEE IAS Annual Meeting, Vol.1, pp. 384-389, Oct. 2002.
[15] Sutton, Richard S. Barto, and G. Andrew, Reinforcement Learning: An Introduction, MIT, Cambridge, MA, 1998.
[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: A Survey,” Journal of Artificial Intelligence Research, no.4, pp. 237-285, 1996.
[17] E. Alpaydin, Introduction to Machine Learning, MIT, Cambridge, MA, 2004.
[18] G.P. Frost, M.N. Howell, T.J. Gordon, and Q.H. Wu, “Dynamic Vehicle Roll Control using Reinforcement Learning,” UKACC International Conference on CONTROL , no.427, vol.2, pp.1107-1112 , Sept. 1996.
[19] S.Y. Oh, J.H. Lee, and D.H. Choi, “A new reinforcement learning vehicle control architecture for vision-based road following,” IEEE Transactions. Vehicular Technology, vol.49, pp. 997-1005, May 2000.
[20] J. Valasek, J. Doebbler, M.D. Tandale, and A.J. Meade, “Improved Adaptive–Reinforcement Learning Control for Morphing Unmanned Air Vehicles,” IEEE Transactions. Systems Man and Cybernetics, Part B, vol.38, pp. 1014-1020, Aug. 2008.
[21] C. Watkins, and P. Dayan, “Technical Note: Q-Learning,” Machine Learning ch.8, pp.279-292, 1992.
[22] K.S. Hwang; Y.J. Chen and C.H. Lee ,“Reinforcement Learning in Strategy Selection for a Coordinated Multirobot System,” IEEE Transactions. Systems, Man and Cybernetics, Part A, vol. 37, no. 6, pp.1151 – 1157, Nov. 2007.
[23] R. Hafner, and M. Riedmiller, “Neural Reinforcement Learning Controllers for a Real Robot Application,” IEEE International Conference Robotics and Automation, pp.2098-2103, April 2007.
[24] C.T. Liu and R.C. Hsu, “Adaptive Power Management Based on Reinforcement Learning for Embedded System,” Springer LNAI 5027, June 2008.
[25] V.L. Prabha and E.C. Monie “Hardware architecture of reinforcement learning scheme for dynamic power management in embedded systems” EURASIP Journal on Embedded Systems vol. 2007, no.1, pp.1-1, Jan. 2007.
[26] P.Y Yin,”Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization,” Signal Processing Vol.82 ,No. 7, pp.993-1006, July 2002.
[27] M. Shokri, H. R. Tizhoosh, “Reinforcement Agent for Threshold Fusion”, Journal of Applied Soft Computing, vol 8, no. 1, pp.174-181, Jan. 2008.
[28] J.G. Vlachogiannis and N.D. Hatziargyriou, “Reinforcement learning for reactive power control,” IEEE Transactions. on Power Systems, vol. 19, no. 3, pp. 1317-1325, Aug. 2004.
[29] 勁華科技股份有限公司, http://www.awintech.com.tw/.
[30] 勝一科技, http://104net.net/shengea/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top