(3.238.130.97) 您好!臺灣時間:2021/05/09 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:魏仕益
研究生(外文):Wei, Shih-Yi
論文名稱:以多項式樹搭配佈署知識設計異質性感測網路下之金鑰管理機制
論文名稱(外文):The DK-PHT Based Key Management Mechanisms in Heterogeneous Sensor Networks
指導教授:王智弘王智弘引用關係
指導教授(外文):Wang, Chih-Hung
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:異質性感測網路金鑰管理機制佈署知識多項式雜湊樹
外文關鍵詞:Heterogeneous Sensor NetworksKey Management MechanismDeployment KnowledgePolynomial Hash Tree
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
如何良好的分配與管理金鑰系統是目前無線感測網路(Wireless sensor network) 中最重要的問題。透過金鑰機制的建立,才得以使高度不安全的感測網路環境有基本的安全性。但由於感測節點的資源如計算能力(computational ability),電力(battery life)受限嚴重。因此如何設計有效率且具有高生存能力的金鑰機制就顯得相當重要。隨著感測節點能力的提升,學者開始嘗試將一些能力較高但較貴的節點混和能力較低但較為便宜的節點,建立較有效率的解決方案,稱為異質性感測網路(Heterogeneous Sensor Network)。異質性感測網路已經被許多研究證明其能夠有效解決複雜而困難的感測網路限制且有較高的效率。混合式的網路架構意旨感測網路由不只一種的感測節點所組成。依照此架構,能力較高的節點可以處理比原始架構更為複雜的工作,而能力較低的節點也有較低的負擔進而有效利用整個網路資源。儘管過去已經有許多研究針對異質性感測網路提出如何分派與管理金鑰的機制,但他們大多過度的使用了異質性感測網路的資源,尤其是使用需要持續通訊的佈署後金鑰分配策略(key post-distribution),雖然高層的節點擁有較強的能力,但通訊是感測網路耗費能源的最大敵人。此外,為了避免分析與網路的複雜性,大多的研究只針對與假設了二質性感測網路(bi-level heterogeneous sensor network),而忽略了多階層感測網路(multi-level heterogeneous sensor network)的可能性。基於多階層感測網路的確有能力取得更好的效率,並取得更便宜的成本,我們認為研究多階層感測網路的金鑰分配機制勢在必行。本研究針對上述兩種異質性感測網路進行研究,對不同的環境給予定義,並提出了基於佈署知識的多項式雜湊樹之金鑰管理策略。這個方法也被證明能夠取得較良好的安全性與較高的網路連結率。
In the security of wireless sensor network, the most important problem is how to distribute keys for the sensor nodes to establish a secure channel in an insecure environment. Because the sensor node has limited resources, for instance, low battery life and low computational power, the key distribution scheme must be designed in efficient manner. Recently many studies added a few high-level nodes into the network, which called the Heterogeneous Sensor Network (HSN). Heterogeneous Sensor Network (HSN) has been proven that it can enhance the ability of many sensor network applications by many studies. It is a mixed network structure, which consists of sensor nodes with different abilities. By this structure the higher ability node can handle high level requirements for the sensor network. Although many studies have been proposed previously, they usually used a post-distribution method which has higher communication overhead in nego-tiation intergroup-keys among the sensor nodes. In addition, most of these studies only consider an application for 2-level heterogeneous sensor network instead of multi-level one. However, since the multi-level mixed network actually can enhance the performance and reduce the cost, a generalized multi-level key management mechanism is worthy of being considered. In this thesis, we propose some definitions and strategies for generalized HSN, and design two key manage-ment mechanisms based on both polynomial hash trees and deployment knowledge. It is also proven that our scheme has lower computation and communication overheads but higher con-nectivity and resilience.
中文摘要 i
Abstract iii
Chapter 1: Introduction 1
1.1 Overview 1
1.2 Applications 2
1.3 Limitations 3
1.4 Network assumptions 5
1.5 Security issues and requirements for key management systems 8
1.6 Motivations, contributions and the essay infrastructure 10
Chapter 2: Related Works 13
2.1 Homogeneous sensor networks key management mechanisms 14
2.1.1The single network-wide key predistribution 14
2.1.2 The fully pairwise key predistribution 16
2.1.2 The fully pairwise key predistribution 16
2.1.3 The random key pool predistribution 17
2.1.4 Blom’s pairwise key predistribution 18
2.1.5 The polynomial based key predistribution 20
2.1.6 The deployment knowledge based key predistribution 21
2.2 Heterogeneous sensor networks key management mechanisms 23
2.2.1 The p2p framework for HSNs 23
2.2.2 Hierarchical key management system 24
Chapter 3: The Network Model, Assumptions, and Strategies 27
3.1 The network model 27
3.2 The basic strategies of the network model 32
3.3 The Bi-variate polynomial pairwise key establishment 34
Chapter 4: Sketch of the DKPHBT Key Distribution Mechanism for Bi-Level HSNs 36
4.1 Design concepts 37
4.2 DK-PHBT for bi-level heterogeneous sensor networks 39
4.2.1 Building polynomial tree 39
4.2.1 Building coefficient tree 41
4.3 Using deployment knowledge with DK-PHBT 43
4.4 The full DK-PHBT key management mechanism 45
Chapter 5: Extending to the DKPHT Key Distribution Mechanism for Generalize HSNs 50
5.1 Design concepts 50
5.2 DK-PHT for generalize heterogeneous sensor networks 55
5.3 Using deployment knowledge with DK-PHT 58
5.4 The full DK-PHT key management mechanism 59
Chapter 6: Analysis of DKPHT Based Mechanism 65
6.1 Property analysis 65
6.2 Selection of degree t 71
6.3 Energy dissipation 79
6.4 Improving connectivity in the PHBT scheme 83
6.5 Compare with the previous researches 84
Chapter 7: Experiments and Comparisons 86
7.1 Comparisons of connectivity 90
7.2 The coverage 93
7.3 Standard deviation with connectivity 94
7.4 Transmitting range of CHs with connectivity 95
7.5 Sense range of CHs with coverage 96
7.6 Number of CH with connectivity 97
7.7 Group distance with connectivity 98
7.8 The resilience ability 99
Chapter 8: Conclusions and Future Works 101
References 105
[1].R. Anderson, H. Chan, and A. Perrig, “Key Infection: Smart Trust for Smart Dust,” Proc. IEEE Int’l Conf. Network Protocols (ICNP’ 04), pp. 206-215, 2004.
[2].I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “Wireless Sensor Networks: a Survey,” Computer Networks, Vol. 38, pp.393-422, 2002.
[3].R. Blom, “An Optimal Class of Symmetric Key Generation Systems,” Advances in Cryptology: Proc. EUROCRYPT ’84, pp. 335-338, 1985.
[4].C. Blundo, P. D’Arco, and A. D. Santis, “On Self-Healing Key Distribution Schemes,” IEEE Transactions on Information Theory, Vol.52, pp. 5455-5467, 2006.
[5].C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, “Perfectly-Secure Key Distribution for Dynamic Conferences,” Advances in Cryptology - CRYPTO ’92, LNCS 740, pp. 471–486, 1993.
[6].Y. J. Chen, “Location-Aware Pairwise Key Predistribution Scheme for Wireless Sensor Networks Against Colluding Attacks,” Master Thesis of Department of CSIE, NCYU, Taiwan. June 2007.
[7].H. Chan, V. D. Gligor, A. Perrig, and G. Muralidharan, “On the Distribution and Revocation of Cryptographic Keys in Sensor Networks,” IEEE Transactions on Dependable and Secure Computing, Vol. 2, pp. 233–247, Jul. 2005.
[8].H. Chen, A. Perrig, and D. Song, “Random Key Predistribution Scheme for Sensor Networks,” Proc. of IEEE Symposium Security and Privacy (S&P’ 03), pp. 197-213, 2003.
[9].H. Chan, A. Perrig, and D. Song, “Key Distribution Techniques for Sensor Networks,” Wireless Sensor Networks, pp. 277–303, 2004.
[10].Crossbow, “Wireless Sensor Networks,” http://www.xbow.com/Products/Wireless_Sensor_Networks.htm , Jun. 2005.
[11].J. Deng and Y. S. Han, “Multipath Key Establishment for Wireless Sensor Networks Using Just-Enough Redundancy Transmission,” IEEE Transactions on Dependable and Secure Computing, Vol. 5, No. 3, pp. 177-190, 2008.
[12].W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A Key Predistribution Scheme for Sensor Networks using Deployment Knowledge,” IEEE Transactions on Dependable and Secure Computing, Vol.3, No.1, pp.62-77, Mar. 2006.
[13].R. Dutta, S. Mukhopadhyay, “Improved Self-Healing Key Distribution with Revocation in Wireless Sensor Network,” Proc. of WCNC, 2007.
[14].L. Eschenauer and V. Gligor, “A Key Management Scheme for Distributed Sensor Networks,” Proc. ACM Conf. Computer and Comm. Security (CCS’02), pp. 41-47, Nov. 2002.
[15].P. Erdos and A. Rényi, “On the Evolution of Random Graphs,” Publ. Math. Inst. Hungar. Acad. Sci. 5, pp. 17-61, 1960.
[16].D. Huang, M. Mehta, A. van de Liefvoort, and D. Medhi, “Modeling Pairwise Key Establishment for Random Key Predistribution in Large-Scale Sensor Networks,” IEEE/ACM Transactions On Networking, Vol. 15, No. 5, pp.1204-1215, Oct. 2007.
[17].F. Kausar, S. Hussian, L. T. Yang, A. Masood, “Scalable and Efficient Key Management for Heterogeneous Sensor Networks,” The Journal of Supercomputing, Springer, Vol. 45, No. 1, pp. 44-65, 2008.
[18].D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed Sensor Networks,” Proc. of 10th ACM Conference on Computer and Communications Security (CCS’03), pp. 52–61, Oct. 2003.
[19].D. Liu and P. Ning, “Location-Based Pairwise Key Establishments for Static Sensor Networks,” ACM Workshop on Security in Ad Hoc and Sensor Networks (SASN '03), pp. 72–82, Oct. 2003.
[20].D. Liu, P. Ning, and W. Du, “Group-Based Key Pre-Distribution in Wireless Sensor Networks,” in Proc. of 2005 ACM Workshop on Wireless Security (WiSe 2005), pp. 11–20, Sep. 2005.
[21].K. Lu, Y. Qian, J. Hu, “A Framework for Distributed Key Management Schemes in Heterogeneous Wireless Sensor Networks,” Performance, Computing, and Communications Conference, 2006.
[22].K. McCusker, “Cryptography Key Distribution in Wireless Sensor Networks: a Hardware Perspective,” Ph. D. Thesis of Dublin City University School of Electronic Engineering, Ireland, Jan. 2008.
[23].K. Pister, J. Kahn, and B. Boser, “Smart Dust,” http://robotics.eecs.berkeley.edu/~pister/SmartDust/, Jun. 2009.
[24].K. Ren, W. Lou, and Y. Zhang, “LEDS: Proving Location-Aware End-to-End Data Security in Wireless Sensor Networks,” IEEE Transactions on Mobile Computing, Vol. 7, pp.585-598, May 2008.
[25].M. Shi, X. Shen, Y. Jiang, and G. Lin, “Self-Healing Group-Wise Key distribution Schemes with Time-Limited Node Revocation for Wireless Sensor Networks,” IEEE Security in Wireless Mobile Ad hoc and Sensor Networks, pp.38-46, Oct. 2007.
[26].P. Traynor, R. Kumar, H. Choi, G. Cao, S. Zhu, and T. La Porta, “Efficient Hybrid Security Mechanisms for Heterogeneous Sensor Networks,” IEEE Transactions On Mobile Computing, VOL. 6, pp.663-677, Jun. 2007.
[27].J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless Sensor Network Security: a Survey,” In: Xiao Y. (ed) Security in Distributed, Grid, and Pervasive Computing. Auerbach Publications, CRC Press.
[28].T. Park and K. G. Shin, “LiSP: A Lightweight Security Protocol for Wireless Sensor Networks,” ACM Transactions on Embedded Computing Systems (TECS), Vol. 3, pp. 634-660, Aug. 2004.
[29].A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: Security Protocols for Sensor Networks,” in ACM Wireless Networks Journal (WINE), Vol. 8, pp. 521–534, Sep. 2002.
[30].J. Staddon, S. Miner, and M. Franklin, “Self-Healing Key Distribution with Revocation,” IEEE Symposium of Security and Privacy, pp.241-257, 2002.
[31].L. Xu, C. Huang, “Computation-Efficient Multicast Key Distribution,” IEEE Transactions on Parallel and Distributed Systems, Vol. 19, pp.577-587, May 2008.
[32].Z. Yu and Y. Guan, “A Key Pre-Distribution Scheme Using Deployment Knowledge for Wireless Sensor Networks,” IEEE Information Processing in Sensor Networks, pp. 261-268, 2005.
[33].M. F. Younis, K. Ghumman, and M. Eltoweissy, “Location-Aware Combinatorial Key Management Scheme for Clustered Sensor Networks,” IEEE Transactions on Parallel and Distributed Systems, Vol. 17, pp. 865-882, Aug. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔