跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴龍文
研究生(外文):Long-Wen Lai
論文名稱:養液高硝酸態氮、鉀肥及其比例對番茄生長及果實產量、品質之影響
論文名稱(外文):Plant Growth and Fruit Yield, Quality of Tomato as Affected by High Nitrate, Potassium and Ratios of Nutrient Solution
指導教授:顏永福
指導教授(外文):Yung-Fu Yen Ph. D.
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:番茄硝酸態氮
外文關鍵詞:TomatoNitratePotassium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本試驗以番茄‘桃佳’為材料,探討養液高氮、鉀濃度及其比例對植株生長、果實產量及品質的影響,以供生產高品質番茄栽培之參考。
試驗一:以盆植滴灌方式栽培,基礎養液之NO3-與K+濃度分別為13.75 mM及8.75 mM,養液EC為2.3 mS/cm,至第一串花開時開始處理高濃度養液EC=4.6。以基礎養液為對照組,處理組以氮與鉀濃度總合固定為49 mM,氮:鉀比例分別為N13K36([N]:[K]=13:36 mM)、N17K32([N]:[K] =17:32 mM)、N21K28([N]:[K] =21:28)、N25K24([N]:[K]=25:24 mM)及N29K20([N]:[K]=29:20 mM)。
各處理番茄總產量分別為983.5、1303.3、1503.8、1397.4及1019.5 g/plant ,可販售果產量分別為828.3、1140.3、1205.4、1198.7及743.0 g/plant,均顯著較對照組的659.0及573.7 g/plant高,其中N21K28處理之植株有較高的產量。處理組第6果房果實可溶性固形物分別為6.09、6.06、6.37、6.35及6.46 °Brix,滴定酸度分別為0.41、0.40、0.42、0.39及0.40 %,均顯著較對照組的5.28 °Brix和0.34 %為高。N13K36、N17K32及N21K28處理之植株高度、葉片總面積及莖部乾物重顯著較對照組高,果實抗壓力(compression force)亦相對較高。所有處理組果汁之K+和Na+離子均較對照組高;但NO3-和Ca2+離子均較對照組低。結果顯示,考慮植株生長、產量及果實品質的影響,建議以N21K28的處理較佳。
試驗二:養液以氮:鉀比例N21K28(21:28)為對照組,處理組固定K+濃度為28 mM,NO3-濃度分別為29、25、17及13 (mM)。結果番茄總產量分別為1098、1313、1261、及1137 g/plant,可販售果實產量分別為816、993、939及758 g/plant,果實總產量與NO3-濃度呈二次迴歸關係,結果顯示對照組N21K28之植株有較高的產量。N17K28及N13K28的處理,第二、四、六果房果實可溶性固形物分別為5.60、6.08、6.13及5.64、6.13、6.26 °Brix,顯著較對照組的6.37、6.70及6.77 °Brix為低。對照組與各處理組果實之K+、Na+和NO3-離子含量均隨果房位置增加而增加;但Ca2+離子則隨果房位置增加而減少,其中K+和Na+離子隨著養液中NO3-濃度提高而降低;NO3-和Ca2+離子隨著養液中NO3-濃度提高而增加。各處理間之植株高度、莖部乾重與對照組無顯著差異,N13K28處理之葉片總面積、第8果房上方葉片之葉長、葉寬及葉片乾重顯著較對照組低。
試驗三:養液以氮:鉀比例N21K28(21:28)為對照組,處理組固定NO3-濃度為21 mM,K+濃度分別為36、32、24及20 (mM)。結果番茄總產量分別為1338.6、1261.5、1399.2及1321.2 g/plant,可販售果實產量分別為1018.4、969.2、1171.4及991.5 g/plant,結果顯示對照組N21K28之植株有較高的產量。N21K36處理的第二、四、六果房果實可溶性固形物分別為6.94、7.08及7.31 °Brix,顯著較對照組的6.14、6.48及6.61 °Brix為高,顯示提高養液中之K+濃度可提高果實品質;對照組與各處理組果實之K+、Na+和NO3-離子含量均隨果房位置增加而增加;但Ca2+離子則隨果房位置增加而減少,其中K+和Na+離子隨著養液中K+濃度提高而增加;NO3-和Ca2+離子隨著養液中K+濃度提高而降低。N21K24及N21K20處理之植株高度及莖部乾重顯著較對照組低,其於各處理與對照組無顯著差異。
本試驗發現適量提高養液氮與鉀濃度,同時提高養液EC值,可以增加番茄果實產量與品質;同時促進番茄植株的生長。依據試驗結果,建議在番茄經濟栽培上採用EC:4.0~4.5,NO3-:20~25 mM,K+:25~30 mM,NO3-/K+:0.75~0.9,可促進番茄植株生長並增加果實產量及品質。
Abstract

In these experiments the plant growth, fruit yield and quality of tomato were as affected by the N/K rations of nutrient solutions that contented high nitrate and potassium concentrations, the formulations of nutrient solution will be applied to tomato production.

Experiment 1: the plants before flowering were irrigated with basic nutrient solution through a dropping system, after flowering these plot plants were divided into six treatments x 3 replications with RCBD design, these treatments were 5 treatments of N13K36 ([N]:[K]=13:36 mM), N17K32([N]:[K] =17:32 mM), N21K28([N]:[K] =21:28)、N25K24([N]:[K]=25:24 mM), N29K20([N]:[K]=29:20 mM) and Ck ([N]:[K]=13.75:8.75 mM), the total yields of fruit were 983.5, 1303.3, 1503.8, 1397.4, and 1019.5 g/plant, respectively, the marketable yields were 828.3, 1140.3, 1205.4, 1198.7, and 743.0 g/plant, the results showed that all treatments had higher total yield and marketable yield than Ck which are 659.0 and 537.7 g/plants, respectively. As well as, the fruit qualities of TSS and titrate organic acid of fruit of all treatments were also higher than Ck. The plant characteristics of plant height, total leaf area, and dry stem weight of N13K36、N17K32及N21K28 showed higher than Ck, as well as the resistances of compression force of fruit. The K+ and Na+ content of fruit juices of all treatments appeared higher than Ck, but the NO3- and Ca2+ were lower. It is concluded that the N21K28([N]:[K] =21:28 mM) treatment appeared the best one.

Experiment 2: The formula of nutrient solutions of treatments were prepared contenting NO3- concentration 29, 25, 17, and 13 mM and K+ 28 mM, the formula of N21K28([N]:[K] =21:28 mM) as Ck. The results showed that the total yield of fruit of N 29K28, N25K28, N17K28, and N13K28 mM treatments were 1098, 1313, 1261, 1137 g/plant, respectively, as well as, the marketable yields were 816, 993, 939, and 758 g/plant, respectively. The relationship each of total yield and marketable yield against NO3- concentration appeared second order responses. Both total yield and TSS of fruit juices of Ck N21K28 was the best one. K+, Na+, NO3- contents of fruit juices appeared increasing with increasing position of fruit trusses, in contrast, Ca2+content appeared decreasing with increasing position of fruit trusses. K+ and Na+ contents of fruit juices were decreased while plants were treated with high NO3- formula, In contrast, NO3- and Ca2+ were increased. The plant characteristics of total leaf area, leaf length, and leaf dry weight were insignificantly different among treatments, but the N13K28 treatment which appeared lower than Ck.

Experiment 3:The formula of nutrient solutions of treatments were prepared having K+ 36, 32, 24, and 20 mM and NO3- 21 mM, the formula of N21K28([N]:[K] =21:28 mM) as Ck. The total yield of fruit of N21K36, N21K32, N21K24, N21K20 were 1338.6, 1261.5, 1399.2, and 1321.2 g/plant, respectively, as well as the marketable yield were 1018.4, 969.2, 1171.4, and 991.5 g/plant, respectively. The results showed the N21K28 treatment being the best one, in contrast, the N21K36 treatment produced higher TSS than Ck. It was cloud that high K+ formula of nutrient solution result into high fruit quality. However, K+, Na+, and NO3- contents of fruit juice were increased with increasing position of fruit trusses, but Ca2+ content were decrease. Otherwise, K+ and Na+ content of fruit juices were increased with increasing K+ concentration of nutrient solution, in contrast, NO3- and Ca2+ were decreased.

It is concluded that the high EC formula of nutrient solution having high K+ and NO3- may enhance fruit yield and quality, as well as plant growth, Based on these experiment, the formula of nutrient solution having EC:4.0~4.5, contenting NO3- 20~25 mM, K+ 25~30 mM, NO3-/K+ 0.75~0.9 was recommended for tomato culture that may enhance plant growth and fruit yield and quality.
目錄
壹、 前言---------------------------------------------1
貳、 前人研究
一、 鹽分處理對番茄的影響-----------------------------4
(一)、鹽分逆境對植株生長的影響--------------------------4
(二)、鹽分逆境對番茄果實品質的影響---------------------11
(三)、鹽分逆境對番茄果實產量的影響---------------------13
二、 養液氮肥對番茄的影響----------------------------15
(一)、養液氮肥對番茄植株生長的影響---------------------15
(二)、養液氮肥對番茄果實品質的影響---------------------16
(三)、養液氮肥對番茄果實產量的影響---------------------16
三、 養液鉀肥對番茄的影響----------------------------18
(一)、養液鉀肥對番茄植株生長的影響---------------------18
(二)、養液鉀肥對番茄果實品質的影響---------------------20
(三)、養液鉀肥對番茄果實產量的影響---------------------21
參、 材料與方法
一、 高氮鉀養液其氮/鉀比例對番茄植株生長及果實產量、品質之影響-------------------------------------------------23
二、 高氮肥養液對番茄植株生長及果實產量、品質之影響--28
三、 高鉀肥養液對番茄植株生長及果實產量、品質之影響--29
肆、 結果
一、 高氮鉀養液其氮/鉀比例對番茄植株生長及果實產量、品質之影響-------------------------------------------------31
(一)、高氮鉀養液其氮/鉀比例對植株生長之影響------------31
(二)、高氮鉀養液其氮/鉀比例對果實產量之影響------------32
(三)、高氮鉀養液其氮/鉀比例對果實品質之影響------------33
(四)、高氮鉀養液其氮/鉀比例對果實營養元素之影響--------34
二、 高氮肥養液對番茄植株生長及果實產量、品質之影響--36
(一)、高NO3-養液對植株生長之影響-----------------------36
(二)、高NO3-養液對果實產量之影響-----------------------39
(三)、高NO3-養液對果實品質之影響-----------------------40
(四)、高NO3-養液對果實營養元素之影響-------------------41
三、 高鉀肥養液對番茄植株生長及果實產量、品質之影響--43
(一)、高K+養液對植株生長之影響-------------------------43
(二)、高K+養液對果實產量之影響-------------------------45
(三)、高K+養液對果實品質之影響-------------------------46
(四)、高K+養液對果實營養元素之影響---------------------47
伍、 討論
一、 高氮鉀養液其氮/鉀比例對番茄植株生長及果實產量、品質之影響-------------------------------------------------50
(一)、高氮鉀養液其氮/鉀比例對植株生長之影響------------50
(二)、高氮鉀養液其氮/鉀比例對果實產量之影響------------51
(三)、高氮鉀養液其氮/鉀比例對果實品質之影響------------52
(四)、高氮鉀養液其氮/鉀比例對果實營養元素之影響--------53
二、 高氮肥養液對番茄植株生長及果實產量、品質之影響--54
(一)、高NO3-養液對植株生長之影響-----------------------54
(二)、高NO3-養液對果實產量之影響-----------------------54
(三)、高NO3-養液對果實品質之影響-----------------------56
(四)、高NO3-養液對果實營養元素之影響-------------------56
三、 高鉀肥養液對番茄果實產量、品質及植株生長之影響--57
(一)、高K+養液對植株生長之影響-------------------------57
(二)、高K+養液對果實產量之影響-------------------------59
(三)、高K+養液對果實品質之影響-------------------------60
(四)、高K+養液對果實營養元素之影響---------------------61
陸、 結論--------------------------------------------63
柒、 參考文獻----------------------------------------97
捌、 附錄-------------------------------------------110
朱德民. 1995. 植物與環境逆境. 國立編譯館. P.147-187.
何小珍、李文汕. 2003. 鹽分處理對番茄植株生育、產量和果實品質之影響 興大園藝28(1):43-54
李文汕. 1999. 蔬菜無土介質容器栽培. 蔬菜容器栽培技術開發研討會專輯. 國立中興大學園藝學系編印. P.1-17.
林傳琦、高景輝. 2000. 細胞壁與鹽分逆境所抑制之生長. 科學農業 48(7, 8):169-175
柯勇. 2002. 植物生理學. 藝軒圖書出版社. P.667-686.
農業統計年報. 2007. 行政院農業委員會出版.
廖玉婉,徐善德. 1999. 植物生理學. 啟英文化事業有限公司. P.179-286.
顏永福、林大村. 2002. 養液鹽份對番茄果實產量、品質和植株生長的影響. 中國園藝. 48:25-32.
Adams, P. 1991. Effect of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. J. Hort. Sci. 66:201-207.
Adams, P., J. N. Davies, and G. W. Winsor. 1978. Effects of nitrogen, potassium and magnerium on the quality and chemical composition of tomatoes grown in peat. J. Hort. Sci. 53:115-122.
Adams, P. and L. C. Ho. 1989. Effects of constant and fluctuating salinity on the yield, quality and calcium status of tomatoes. J. Hort. Sci. 64:725-732.
Adams, P. and L. C. Ho. 1992. The susceptibility of morden tomato cultivars to blossom end rot in relation to salinity. J. Hort. Sci. 67:827-839.
Akinci, I. E. and M. Simsek. 2004. Ameliorative effects of potassium and calcium on the salinity stress in embryo culture of cucumber (Cucumis sativus L.)J. Bio. Sci. 4(3):361-365.
Alam, S. M. 1994. Nutrient uptake by plants under stress condition. P. 227-243. In M. Pessarakli (ed.) Handbook of plant and crop stress. Marcel Dekker, New York.
Alarcon, J. J., M. J. Sanchez-Blanco, M. C. Bolarin, and A. Torrecillas. 1994. Growth and osmotic adjustment of tomato cultivars during and after saline stress. Plant Soil. 166:75-82.
Al-Jaloud, A. A., M. S. Baig, M. A. Errebhi, A. H. AbdelGadir and H. B. Sarhan. 1998. The effect of fertigation different levels of nitrogen, phosphorus and potassium on greenhouse cucumber yield. Acta Hort. 710:359-363.
Al-Karaki, G. N. 2000. Growth, sodium, and potassium uptake and translocation in salt stressed tomato. J. Plant Nutr. 23(3):369-379.
Altunlu, H. And A. Gul. 1999. Effects of different amounts of nitrogen and potassium nutrition on post harvest quality of cucumber. Acta Hort. 486:383-388.
Aranda, R. R., T. Soria, and J. Cuartero. 2001. Tomato plant water uptake and plant water relationships under saline growth conditions. Plant Sci. 160:265-272.
Arif, H. and AD. Tomos. 1993. Control of wheat leaf growth under saline conditions. p. 45-52. In: Lieth, H., and A. Al. Masoom.(eds). Towards the rational use of high salinity tolerant plants. Vol. 2. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Arquero, O., D. Barranco, and M. Benlloch. 2006. Potassium starvation increases stomatal conductance in Olive trees. HortScience. 41(2): 433-436.
Auerswald, H., D. Schwarz, C. Kornelson, A. Krumbein, and B. Bruckner. 1999. Sensory analysis, sugar and acid content of tomato at different EC values of the nutrient solution. Sci. Hort. 82:227-242.
Awang, Y. B. and J. G. Atherton. 1995. Growth and fruiting responses of strawberry plants grown on rockwool to shading and salinity. Sci. Hort. 62:25-31.
Awang, Y. B., J. G. Atherton, and A. J. Taylor. 1993. Salinity effects on strawberry plants grown in rockwool. Ⅰ. Growth and leaf water relations. J. Hort. Sci. 68:783-790.
Balibrea, M. E., E. Cayuela, F. Artes, and F. Perez-Alfocea. 1997. Salinity effects on some postharvest quality factors in a commercial tomato hybrid. J. Hort. Sci. 72:885-892.
Badr, M. A. and A. S. Talaab. 2008. Response of tomatoes to nitrogen supply through drip irrigation system under salt stress conditions. Aus. J. Basic and Applied Sci. 2(1):149-156.
Belorkar, P. V., B. N. Patel., V. J. Golliwar and A. J. Kothare, 1992. Effect of nitrogen and spacing on growth, flowering and yield of African marigold. J. Soils and Crops, 2:62-4.
Beringer, H., H. E. Header, and M. Lindhauer. 1983. Water relations and incorporation of C assimilates in tubers of potato plants differing in K nutrition. Plant Physiol. 73:956-960.
Besford R. T. and G. A. Maw. 1975. Effect of potassium nutrition on tomato plant growth and fruit development. Plant and Soil. 42:395-412.
Beyenne, GT., A. Hunter, KK. Tanino, R. Arora, B. Graves, M. Griffith, LV. Gusta, O. Junttila, J. Palta, and M. Wisniewski. 2003. Physiological response of tomato from induced sodium chloride stress. Acta. Hort. 618:291-298.
Bolarin, M. C., M. T. Estan, M. Caro, R. R. Aranda, and J. Cuartero. 2001. Relationship between tomato fruit growth and fruit osmotic potential under salinity. Plant Sci. 160:1153-1159.
Botrini, L., A. Graifenberg, L. Giustiniani, F. Filippi, and M. Curadi. 2003. Tomatoes and salinity: yield, growth and mineral allocation. Colture Protette. 32:83-90.
Boyhan, G. E., R. L. Torrance, and C. R. Hill. 2007. Effect of nitrogen, phosphorus, and potassium rates and fertilizer sources on yield and leaf nutrient ststus of short-day onions. HortScience 42(3):653-660.
Caretto S., A. Parente., F. Serio, and P. Santamaria. 2008. Influence of potassium and genotype on vitamin E content and reducing sugar of tomato fruits. HortScience 43(7):2048-2051.
Carvajal, M., A. Cerda, and V. Martinez. 2000. Modification the response of saline stressed tomato plants by the correction of cation disorders. Plant Growth Regul. 30:37-47.
Carvajal, M., V. Martinez, and A. Cerda. 1999. Influence of magnesium and salinity on plant grown in hydroponic culture. J. Plant Nutr. 22(1):177-190.
Castorena, V. M., A. L. Ulery, C. E. Valencia and M. D. Remmenga, 2003. Salinity and nitrogen rate effevts on the growth and yield of chile pepper plants. Soil Sci. Soc. Am. J., 67:1781-1789.
Cramer, G. R., A. Lauchli, and V. S. Polito. 1985. Displacement of Ca2+ by Na+ from the plasmalemma of cells. Plant Physiol. 79:207-211.
Cramer, M. D., A. Schierholt, Y. Z. Wang, and S. H. Lips. 1995. The influence of salinity on the utilization of root anaplerotic carbon and nitrogen metabolism in tomato seedlings. J. Exp. Bot. 46:1569-1577.
Cuartero, J. and R. Fernandez-Munoz. 1999. Tomato and salinity. Sci. Hort. 78:83-125.
Demiral, M. A. and A. T. Koseoglu. 2005. Effect of potassium on yield, fruit quality, and chemical composition of greenhouse-grown galia melon. J. Plant Nutr. 28:93-100.
Djurovka, M., V. Markovic and Z. Ilin. 1997. The effect of nitrogen fertilizer on the dry matter content and mineral elements in radish. Acta Hort. 462:139-144.
Dorais, M., A. P. Papadopoulos, and A. Gosselin. 2001. Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie. 21:367-383.
Dunlap, J. R. and M. L. Binzel. 1996. NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol. 112:379-384.
E. Heuvelink. 2005. Tomatos. CAB International. P.145-158.
Ehret, D. L. and L. C. Ho. 1986a. Translocation of calcium in relation to tomato fruit growth. Ann. Bot. 58:679-688.
Ehret, D. L. and L. C. Ho. 1986b. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hort Sci. 61:361-367.
El-iklil, Y., M. Karrou, M. Rachid, and M. Benichou. 2002. Salt stress effect on metabolite concentrations of Lycopersicon esculentum and Lycopersicon sheesmanii. Canadian. J. Plant Sci. 82:177-183.
Elizabeth A. Wahle and John B. Masiunas, 2003. Population density and nitrogen fertility effects on tomato growth and yield. HortScience 38: (3):367-372.
Endris, S. and M. J. Mohammed. 2007. Nutrient acquisition and yield response of Barley exposed to salt stress under different levels of potassium nutrition. Int. J. Environ. Sci. Tech. 4(3):323-330.
Fatima, M. L., E. M. Ileana, P. A. Ramon., R. L. Nancy., G. A. Adolfo, and M. E. Manuel. 2008. Influence of notrogen and potassium fertilization on fruting and capsaicin content in habanero pepper (Capsicum chinese Jacq.) HortScience. 43(5):1549-1554.
Franco, A., C. Esteban and C. Rodriguez. 1993. Effects of salinity on various growth stages of muskmelon cv. Revigal. J Hort. Sci. 68:899-904.
Gao, Z., M. Sagi, and S. H. Lips. 1998. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato(Lycopersicon esculentum L.)as affected by salinity. Plant Sci. 135:149-159.
Gonzalez Pounce, R. And M. L. Salas. 1999. Differential utilization of nitrates by solanaceous species, crops (tomato and pepper) and weeds (black nightshade and thorn apple). J. Hort. Sci. Biotechnol. 74:254-258.
Gough, C. And G. E. Hobson. 1990. A comparison of the productivity, quality, shelf-life characteristics and consumer reaction the crop from cherry tomato plants grown at different levels of salinity. J. Hort. Sci. 65(4):431-439.
Graifenberg, A., L. Giustiniani, L. Barsanti, and L. Botrini. 2000. Effects of salt-stress on tomato fruit quality. Colture Protette. 29:71-80.
Grattan, S. R. And C. M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Sci. Hort. 78:127-157.
Grava, A., E. Matan, C. Yehezkel, A. Abitan, D. Samuel, Z. Plaut. 2001. Ion uptake and distribution in Tomato plants grown in sand and irrigated with brackish water. Acta. Hort. 554:121-130.
Greenway, H. and R. Munns. 1980. Mechanisms of salt tolerance in non halophytes. Annu. Rev. Plant Physiol. 31:149-190.
Grierson, D., A. A. Kader. 1986. Fruit ripening and quality. P.241-280. In:Atherton, J. G. (eds). The Tomato Crop. A Scientific Base for Improvement, Champman and Hall London, New York.
Guler, S. and N. Guzel. 1999. Effect of varying level of nitrogen and potassium concentration in the nutrient solution on the yield and leaf composition of drip-fertigated tomatoes. Acta Hort. 506:81-85.
Haeder, H. E., M. Mengel., and H. Forster. 1973. The effect of potassium on translocation of photosynthates and yield pattern of potato plants. J. Sci. Food Agr. 24:1479-1487.
Haley, T. B., and Reed, D. W. 2004. Optimum potassium concentrations in recirculating subirrigation for selected greenhouse crops. HortScience. 39(6):1441-1444.
Hanger, B. C. 1979. The movement of calcium in plants. Commun. Soil Sci. Plant Anal. 10(1&2):171-193.
Hartley, D. 1995. Feeding and watering, p.31-37. In: W. Banner and M. Klopmeyer (eds.). New Guinea impatiens: A Ball guide. Ball Publ., Batavia. Ⅲ.
Hartz, T. K., P. R. Johnstone., D. M. Francis, and E. M. Miyao. 2005. Processing tomato yield and fruit quality improved with potassium fertiligation. HortScience 40(6):1862-1867.
Ho, L. C., A. Pardossi, G. Serra, and F. Tognoni. 2003. Interactions between root and shoot environmental factors on crop yield and quality. Acat. Hort. 609:121-126.
Janse, J. 1989. Effects of humidity, temperature and concentration of the nutrient solution on firmness, shelflife and flavour of sweet pepper fruits(Capsicum annuum L.). Acta. Hort. 244:123-132.
Jarrel, W.M. and Beverly, R. B., 1981. The dilution effect in plant nutrition studies. Advances in Agronomy, Vol. 34:197-222.
Johnson, H. E., D. Broadhurst, R. Goodacre, and A. R. Smith. 2003. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry. 62:919-928.
Jones, R. W. 1989. Salinity influences cucumber growth and yield. J. Amer. Soc. Hort. Sci. 114(4):547-551
Jungk, A., 1984. Soil and plant factors affecting availability of mineral nutrients. Acta Hort. 145:165-172.
Kafkafi, U., M. Y. Siddiqi, R. J. Glass, A. D. M. Ruth, T.J. 1992. Reduction of nitrate exposure or calcium and potassium chloride salts. J. Plant Nutr. 15:959-979.
Kafkafi, U., N. Valoras, and J. Letey. 1982. Chloride interaction with nitrate and phosphate nutrition in tomato(Lycopersicon esculemtum L.). J. Plant Nutr. 5:1369-1385.
Kanai, S., K. Ohkura, J. J. Adu-Gyamfi, P. K. Mohapatra, N. T. Nguyen, H. Saneoka and K. Fujita. 2007. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J. Experimental Bot. Vol. 58:2917-2928.
Karen, K. P., J. Willumsen, and K. Kaack. 1997. Composition and taste of tomatoes as affected by increased salinity and different salinity sources. J. Hort. Sci. Bio. 73(2):205-215.
Katerji, N., J. W. Hoorn, A. Hamdy, and M. Mastrorilli. 1998. Response of tomatoes, a crop of indeterminate growth, to soil salinity. Agricultural Water Mangement. 38:59-68.
Kaya, C., D. Hiiggs, and A. Ikinci. 2002. An experiment to investigate ameliorative effects of potassium sulphate on salt and alkalinity stressed vegetable crops. J. Plant. Nutr. 25:2545-2558.
Klaring, HP. And D. Schwarz. 2004. A lot of salt reduces the tomato harvest. Gemuse Munchen. 40:36-38.
Knight, S. L., R. B. Rogers, M. A. L. Smith, and L. A. Spomer. 1992. Effects of NaCl salinity on miniature dwarf tomato‘Micro-Tom’:Ⅰ.growth analyses and nutrient composition. J. Plant. Nutr. 15(11):2315-2327.
Lin, D., D. Huang, and S. Wang. 2004. Effects of potassium levels on fruit quality of muskmelon in soilless medium culture. Sci. Hort. 102:53-60.
Lopez., M. V. and S. M. E. Satti. 1996. Calcium and potassium-enchanced growth and yield of tomato under sodium chloride stress. Plant Sci. 114:19-27.
Lynch, J. and A. Lauchli. 1985. Salt stress disturbs the Ca nutrition of barley(Hordeum vulgare L.). New Physiol. 99:345-354.
Maathuis and Amtmaann. 1999. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann. Bot. 84:123-133.
Marschner, H. 1986. Mineral nutrition in higher plants. Academic Press, London. P.674.
Martinez, V. and A. Lauchli. 1991. Phosphorus translocation in salt-stressed cotton. Physiol. Plant. 83:627-632.
McCue, K. F. and A, D. Hanson. 1990 Drought and salt tolerance: towards an understanding and application. Trends Biotechnol. 8:358-362.
Mendlinger, S. 1994. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon. Sci. Hort. 57:41-49.
Mengel, K. and E. A. Kirkby. 1980. Potassium in crop production. Advances in Agronomy. Vol. 33:59-103.
Mengel, K. and W. W. Arneke. 1982. Effect of potassium on the water potential , the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Physiol. Plant. 54:402-408.
Mitchell, J. P., C. Shennan, and S. R. Grattan. 1991. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 83:177-185.
Mizrahi, Y., E. Taleisnik, V. Kagan-Zur, Y. Zohas, R. Offenbach, E. Matan, and R. Golan. 1988. A saline irrigation regime for improving tomato fruit quality without reducing yield. J. Amer. Soc. Hort. Sci. 113:202-205.
Moinuddin, K. S., S. K. Bansal, and N. S. Pasricha. 2004. Inflience of graded levels of potassium fertilizer on growth, yield, and economic parameters of potato. J. Plant nutr. 27(2):239-259.
Munns, R. and A. Termaat. 1986. Whole plant response to salinity. Aust. J. Plant Physiol. 13:143-160.
Munns, R., 1994. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ. 16:15-24.
Munns, R., P. A. Gardner, M. L. Tonnet, H. M. Rawson. 1988. Growth and development in NaCl-treated plants? Ⅱ. Do Na+ or Cl- concentrations in dividing or expanding tissues determine growth in barley? Aust. J. Plant Physiol. 15:529-540.
Navarro, J. M., C. Garrido, M. Carvajal, and V. Martinez. 2002. Yield and fruit quality of pepper plants under sulphate and chloride salinity. J. Hort. Sci. Bio. 77(1):52-57.
Nicola, S. and L. Basoccu. 1994. Nitrogen and N, P, K relation affect tomato seeding growth, yield and earliness. Acta Hortic. 357:95-102.
Ohta, K., Ito, N., Hosoki, T. and Higashimura, H. 1992. Influence of concentration of nutrient solution and salt supplement on quality and yield of cherry tomato grown hydroponically. J. Jap. Soci. Hort. Sci. 60.
Olympios, C. M., I. C. Karapanos, and K. Lionoudakis. 2003. The growth, yield and quality of greenhouse tomatoes in relation to salinity applied at different stages of plant growth. Acta. Hort. 609:313-320
OMAFRA. 2001. Growing Greenhouse Vegetables. Publication 371. Ontario Ministry of Agriculture, Food and Rural Affairs, Toronto, Canada, 116 pp.
Papadopoulos, I. and V. V. Rendig. 1983. Interactive effect of salinity and nitrogen on growth and yield of tomato plants. Plant Soil. 73:47-57.
Pardossi, A., G. Bagnoli, F. Malorgio, C.A. Campiotti, and F. Tognoni, 1999. NaCl effects on celery(Apium graveolens L.)grown in NFT. Sci. Hort. 81:229-242.
Pascale, S., G. Raimondi, A. Martino, G. Barbieri, S. Pascale, A. Paedossi, G. Serra, and F. Tognoni. 2003. Water relations and abscissic acid content in Tomato as affected by osmotic stress. Acta. Hort. 609:89-95.
Perez-Alfocea, F., M. T. Estan, M. Caro, and M. C. Bolarin. 1993. Response of tomato cultivars to salinity. Plant Soil. 150:203-211.
Pessarkli, M., T. C. Tucker. 1988. Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil. Sci. Amer. J. 52:698-700.
Pettigrew, W. T. 1999. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. J. Agron. 91:962-968.
Pressarakli, M. And T. C. Tucker. 1988. Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil Sci. Soc. Am. 52:698-700.
Rengel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15:625-632.
Rodriguez, P., J. DellAmico, D. Morales, M. J. S. Blanco, and J. J. Alarcon. 1997. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. J. Agri. Sci. 16:439-444.
Ruamrungsri, S., C. Suwanthada, N. Ohtake, K. Sueyoshi and T. Ohyama. 2005. Effect of notrogen and potassium on growth and development of Curcuma alismatifoloa Gagnep. Acta Hort. 673:443-448.
Sainju, U. M., S. Rahman, and B. P. Singh. 2001. Evaluating hairy vetch residue as nitrogen fertilizer for tomato in soilless medium. HortScience 36(1):90-93.
Satti, S. M. E. and M. Lopez.1994. Effect of increasing potassium levels for alleviating sodium chloride stress on the growth and yield of tomato. Commun. Soil Sci. Plant. Anal. 25:2807-2823.
Satti, S. M. E. and S. M. Al-Kindi. 1995. Salinity tolerance in tomato: implications of potassium, calcium, and phosphorus. Commun. Soil. Sci. Plant. Anal. 26:2825-2840.
Segura, M. L., J. I. Contreras and P. Galindo. 2007. Response of greenhouse tomato crop to NPK fertilization and quality of irrigation water. Acta Hort. 747:485-488.
Shannon, E. C., J. W.Sronwald, and W. Tal. 1987. Effect of salinity on growth and accumulation of organic and inorganic ions in cultivated and wild tomato species. J. Amer. Soc. Hort. Sci. 112(3):416-423.
Sims, W.L. 1980. History of tomato production for industry around the world. Acta Hort. 100:25-28.
Smith, C. B., K. T. Demchak, P. A. Ferretti, and M. D. Orzolek. 1992. Plant density as related to fertilizer needs for processing and fresh market tomatoes. Commun. Soil Sci. Plant Anal. 23:1439-1449.
Snapp, S. and Shennan, C. 1990. Tomato fruit quality and ions status: The effects of salinity phytophthora root rot and genotype. Hort. Sci. 25(9):601.
Snapp, S. S. and C. Shennan. 1992. Effects of salinity in root growth and death dynamics of tomato Lycopersicon esculentum Mill. New Phytol. 121:71-79.
Sobulo, R. A. and A. O. Olorunda. 1977. The effects of nitrogen, phosphorus and potassium on the canning quality of tomatoes(Lycopersicon esculentum)in south-western Nigeria. Acta Hort. 53:171-180.
Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Growth and factors affecting it. In:Soil fertility and fertilizers, Macmillan publishing Co., NY. P.21-51.
Trudel M. J. and J. L. Ozbun. 1971. Influence of potassium on carotenoid content of tomato fruit. 96(6):763-765.
Ugrinovic, K. 1999. Effect of nitrogen fertilization on quality and yield of red beet(Beta vulgaris var. conditiva Alef.)Acta Hort. 506:99-107.
Van Ieperen, W. 1996. Effect of different day and night salinity levels on vegetative growth, yield and quality of tomato. J. Hort. Sci. 71:99-111.
Verkerke, W. and Gielesen, W. 1991. Hoge EC. Verbetert stevigheid. Groenten + Fruit/Glasgroenten. 1:38-39.
Volkmar, K. M., Y. Hu, and H. Steppuhn. 1998. Physiological responses of plants to salinity: A review. Can. J. Plant. Sci. 78(1):19-27.
Voogt, W. 1988. The growth of beefsteak tomato as affected by K/Ca ratios in the nutrient solution. Acta Hort. 222:155-165.
Wall, M. E. 1940. The role of potassium in plants. Ⅱ. Effects of varying amounts of potassium on the growth, status and metabolism of tomato plants. Soil Sci. 49:315-331.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top