(3.220.231.235) 您好!臺灣時間:2021/03/08 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾凱逸
論文名稱:貝類肌漿網中以鐵催化之脂質氧化反應的特性與餌料微藻對此反應之影響
論文名稱(外文):Some characteristics of iron-catalyzed lipid oxidation reaction in sarcoplasmic reticulum of clams and the effect of dietary microalgae on the activities of this reaction
指導教授:陳淑美陳淑美引用關係黃承輝黃承輝引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:水產生物學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:60
中文關鍵詞:貝類文蛤台灣蜆肌漿網脂質過氧化微藻脂肪酸組成NADHNADPH
外文關鍵詞:ClamMeretrix lusoriaCorbicula flumineaSarcoplamic reticulumLipid oxidationMicroalgaeFatty acid profileNADHNADPH
相關次數:
  • 被引用被引用:3
  • 點閱點閱:346
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先分析了海水文蛤 (Meretrix lusoria) 與淡水台灣蜆 (Corbicula fluminea) 肌漿網 (sarcoplasmic reticulum) 脂質氧化的特性,探討兩種貝類脂質氧化系統是利用 NADH 或 NADPH 作為還原劑,以及在不同溫度 (5 ~ 65 ℃)、 pH 值 (6.0 ~ 7.5) 下的反應。接著探討文蛤以三種微藻:周氏扁藻 (Tetraselmis chui)、牟氏角毛藻 (Chaetoceros muelleri) 及東港等鞭金藻 (Isochrysis galbana) 餵飼八週後,肌肉脂肪酸組成的變化與肌漿網脂質氧化活性。實驗以 TBARS (thiobarbituric acid reactive substances) 值作為脂質氧化活性的指標。研究結果顯示,文蛤與台灣蜆其肌漿網脂質氧化系統偏好以 NADH作為還原劑將三價鐵還原成二價鐵。在溫度上升至45和65 ℃ 時,兩種貝類的 TBARS 值皆會下降,顯示兩種貝類參與肌漿網脂質氧化系統的酵素在高溫都會變性。在 pH 6.0 ~ 7.5環境下,低的 pH 會使兩種貝類的 TBARS 值上升。在相同的環境條件下,文蛤的 TBARS 值皆高於台灣蜆者,這可能和文蛤極性脂中 n-3 高度不飽和脂肪酸含量比蜆高有關。以三種微藻餵飼八週後,文蛤極性脂脂肪酸組成明顯的受到餵飼微藻之脂肪酸組成所影響,尤其是 EPA與 DHA。三種微藻中 I. galbana 的總脂質中含12.8% DHA,而C. muelleri 則含 25% EPA。經餵飼試驗後文蛤肌肉極性脂組成中EPA + DHA 的含量以I. galbana 餵飼組高於其他餵飼組。肌漿網脂質氧化以餵飼I. galbana 的文蛤表現出最高的TBARS值,高於餵飼T. chui 與C. muelleri 的文蛤。此可能與文蛤生物膜的脂肪酸組成有關,經不同微藻餵飼八週後,以餵飼I. galbana的文蛤其極性脂中 n-3不飽和脂肪酸含量高於餵飼 T. chui 與 C. Muelleri 的文蛤。
中文摘要................................................ I
英文摘要................................................II
第一章 前言..............................................1
第二章 文獻整理..........................................3
2.1 文蛤與台灣蜆的分類及習性..........................3
2.2 脂質介紹..........................................5
2.3脂質氧化機制 .....................................10
2.4 微藻的介紹、應用 ................................12
第三章 材料與方法 ......................................14
實驗一、文蛤和台灣蜆肌漿網脂質氧化系統的特性
3.1 實驗生物.........................................14
3.2 肌漿網脂質氧化的測定 ............................14
3.3 文蛤與台灣蜆脂肪酸組成分析 .....................17
3.4 統計分析 ........................................19
實驗二、餵飼不同微藻對文蛤體組成、脂肪酸組成及肌漿網脂質氧化反應的影響
3.5 實驗生物 ........................................20
3.6 實驗用的藻種來源、培養及供餌量 ..................20
3.7 飼養方法 ........................................21
3.8 文蛤體組成分析 ..................................21
3.9 肌漿網脂質氧化的測定 ............................24
3.10 文蛤脂肪酸組成分析..............................24
3.11 微藻脂肪酸組成分析 .............................24
3.12 統計分析 .......................................25
第四章 結果 ............................................26
4.1 文蛤和台灣蜆肌漿網脂質氧化系統的特性 ............26
4.2 餵飼不同微藻對文蛤體組成、脂肪酸組成及肌漿網脂質氧化反應的影響 ............................................27
第五章 討論 ............................................29
第六章 結論 ............................................35
參考文獻 ...............................................36
表 .....................................................51
圖 .....................................................56
附錄 ...................................................60
台灣地區漁業年報,2007。行政院農業委員會漁業署。
何雲達,2001。文蛤養殖。台西水試所漁業輔導專刊,1:111-124。
何雲達,2004。台灣蜆養殖。水產試驗所水產養殖手冊,p 1 - 6。
何雲達,2007。蜆之養殖。水產試驗所水產養殖手冊,p 1 - 10。
李龍雄,2004。水產養殖學。前程出版社。p 218 - 223。
張文重,2005。水產餌料生物學。睿煜出版社。p 76 - 79。
陳天任、賴景陽、何平合、柳芝蓮、陳章波。1996 。台灣常見魚貝介圖說(上)。邵廣昭主編。台灣省漁業局。p 40 - 41。
陳建佑,2003。建立市場導向之文蛤產銷體系。農委會漁業署出版品漁業推廣,204:16-29。
趙強,1997。自由基與抗氧化物質。美食天下第64期。p 116。
趙克然,2003。氧自由基與臨床。合記圖書出版社。p 203-204。
劉建明,1989。貝類養殖技術。五洲出版社。p 330-337。
蘇惠美,1999。餌料生物之培養與利用。台灣省水產試驗所 東港分所。p57-62。

Albentosa, M., Labarta, U., Fern�鴨dez-Reiriz, M.J., P�臆ez-Camacho, A., 1996. Fatty acid composition of Ruditapes decussatus spat fed on different microalgae diets. Comparative Biochemistry and Physiology Part A 113: 113-119.
Allbers, B., Bray, D., Lewis, J., Raffm., Roberts, K., Watson, J.D., 1994. Molecular Biology of the Cell, 3rd Ed., Garlend Publishing. Inc., New York, U. S. A., 744-750.
Association of Analytical Chemists, 1984. (A.O.A.C.). Official Method of Analysis, 14th Ed., AOAC, Arlington, VA., U.S.A.
Baker, R.T.M., Davies, S.J., 1997. Muscle and hepatic fatty acid profiles and alpha-tocopherol status in African catfish (Clarias gariepinus) given diets varying in oxidative state and vitamin E inclusion level. Animal Science 64: 187-195.
Bell, J.G., Youngson., Mitchell. A.I., Cowey, C.B., 1989. The effect of enhanced intake of linolenic acid on the fatty acid composition of tissue polar lipids of postsmolt Atlantic salmon (Salmo salar). Lipids 24: 240-242.
Berntsson, K.M., Jonsson, P.R., W�躪gberg, S.A., Carlsson, A.S., 1997. Effects of broodstock diets on fatty acid composition, survival and growth rates in larvae of the European flat oyster, Ostrea edulis. Aquaculture 154: 139-153.
Borhan, M., Shewfelt, R.L., Hultin, H.O., 1984. Sarcoplasmic reticulum from flounder muscle having improved lipid peroxidative activity. Analytical Biochemistry 137: 58–65.
Bitman, J., Wood, L., Melta, N.R., Hamosh, P., Hamosh, M., 1984. Comparison of phospholipid composition of breast milk from mothers of term and preterm infants during lactation. American Journal of Clinical Nutrition 40: 1103-1119.
Brown, M.R., 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 145: 79-99.
Brown, M.R., Jeffrey, S.W., Volkman, J.K., Dunstan, G.A., 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151: 315-331.
Brown, R.E., Jarvis, K.L., Hyland, K.J., 1989. Protein measurement using bicinchoninic acid: elimination of interfering substances. Analytical Biochemistry 180: 136-139.
Buege, J.A. and Aust, S.D., 1978. Microsomal Lipid Peroxidation. Method in Enzyeology 52, Fleischer, S. and Packer, eds. Academic Press, New York, 302.pp
Caers, M., Coutteau,P., Lombeida,P., Sorgeloos, P., 1998. The effect of lipid supplementation on growth and fatty acid composition of Tapes philippinarum spat. Aquaculture 162: 287-299.
Caers, M., Coutteau,P., Sorgeloos, P., 1999. Dietary impact of algal and artificial diets, fed at different feeding rations, on the growth and fatty acid composition of Tapes philippinarum (L.) spat. Aquaculture 170: 307-322.
Caers, M., Coutteau,P., Cure, K., Morales, V., Gajardo,G., Sorgeloos, P., 1999. The Chilean scallop Argopecten purpuratus (Lamarck, 1819): II. manipulation of the fatty acid composition and lipid content of the eggs via lipid supplementation of the broodstock diet. Comparative Biochemistry and Physiology Part B 123: 97-103.
Chaiyapechara, S., Casten, M.T., Hardy, R.W. and Dong, F.M., 2003. Fish performance, fillet characteristics, and health assessment index of rainbow trout (Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E. Aquaculture 219: 715-738.
Cheeseman, K.H., Slater, T.F., 1993. An introduction to free radical biochemistry. British Medical Bulletin 49: 481-493.
Chen, S.F., He, Y.C., Tan, G.Y., Liu, X.S., Pan, S.R., Gao, Y.H.,Li, S.Y., 1985. Two newly isolated marine chrysophyta and its food values to Mytilus edulis larvae. Transactions Oceanology Limnology 2: 44-46 (in Chinese with English abstract).
Chien, L.T., Hwang, D.F., 2001. Effects of thermal stress and vitamin C on lipid peroxidation and fatty acid composition in the liver of thornfish Terapon jarbua. Comparative Biochemistry and Physiology Part B 128: 91-97.
Darnell, J., Lodish, H. and Baltmore, D., 1990. Molecular Cell Biology, 2nd Ed., Scientific American Book, Inc., New York, U. S. A., 75-77.
Decker, E.A., Erickson,M.C., Hultin,H.O., 1988. Enzymic lipid oxidative activities of sarcoplasmic reticulum in several species of northwest Atlantic fish. Comparative Biochemistry and Physiology Part B 91: 7-9.
Decker, E.A., Huang, C.H., Osinchak, J.E., Hultin, H.O., 1989. Iron and copper:Role in enzymic lipid oxidation of fish sarcoplasmic reticulum at in situ concentrations. Journal of Food Biochemistry 13: 179-186.
Delaporte, M., Soudant, P., Moal, J., Lambert, C., Qu�臆��1, C., Miner, P., Choquet, G., Paillard, C., Samain, J-F., 2003. Effect of a mono-specific algal diet on immune functions in two bivalve species - Crassostrea gigas and Ruditapes philippinarum. The Journal of Experimental Biology 206: 3053-3064.
Delaporte, M., Soudant, P., Moal, J., Kraffe, E., Marty, Y., Samain, J-F., 2005. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comparative Biochemistry and Physiology Part A 140: 460-470.
Delaunay, F., Marty, Y., Moal, J., Samain, J.F., 1993. The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. Journal of Experimental Marine Biology and Ecology 173: 163-179.
Dembitsky, V. M., H. ezankov��, T. ezanka, L. O. Hanu., 2003. Variability of the fatty acids of the marine green algae belonging to the genus Codium. Biochemical Systematics and Ecology 31: 1125-1145.
De Moreno, J.E.A., Moreno, V.J., Brenner, R.R., 1976. Lipid metabolism of the yellow clam, Mesodesma mactroides: 2-polyunsaturated fatty acid metabolism. Lipids 11: 561-566.
De Moreno, J.E.A., Moreno, V.J., Brenner, R.R., 1977. Lipid metabolism of the yellow clam, Mesodesma mactroide: 3-saturated fatty acids and acetate metabolism. Lipids 12: 804-808.
Dosanjh, B.S., Higgs, D.A., McKenzie, D.J., Randall, D.J., Eales, J.G., Rowshandeli, N., Rowshandeli, M., Deacom, G., 1998. Influence of dietary blends of menhaden oil and canola oil on growth, muscle lipid composition, and thyroidal status of Atlantic salmon (salmo salar) in sea water. Fish Physiology and Biochemistry 19: 123-134.
Fern�鴨dez-Reiriz, M.J., Labarta, U., Albentosa, M., P�臆ez-Camacho, A., 2006. Lipid composition of Ruditapes philippinarum spat: Effect of ration and diet quality. Comparative Biochemistry and Physiology Part B 144: 229-237.
Folch, J., Lees, M., Sloane-Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissue. The Journal of Biological Chemistry 226: 497-507.
Forni, L.G., 1989. Free radical reaction involving fatty acids the pulse radiolysis approach. Membrane Lipid Oxidation. Vol. I, CRC Press. Inc., Florida, U. S. A., 15.pp
Garrido, A., Ga’rate, M., Campos, R., Villa, A., Nieto, S., Valenzuela, A., 1993. Increased susceptibility of cellular membranes to the induction of oxidative stress after ingestion of high doses of fish oil: effect of aging and protective action of dl-α tocopherol supplementation. Journal of Food Biochemistry 4: 118-122.
Greene, D.H.S., Selivonchick, D.P., 1990. Effect of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss). Aquaculture 89: 165-182.
Guyton, K.Z., Kensler, T. W., 1993. Oxidative mechanism in carcinogenesis. British Medical Bulletin 49: 532-544.
Halliwell, B., Gutteridge, J. M. C., Cross, C. E., 1992. Free radicals, antioxidants and human disease: where are we now? The Journal of Laboratory and Clinical Medicine 199: 598-620.
Helm, M.M., Laing, I., 1987. Preliminary observations on the nutritive value of Tahiti isochrysis to bivalve larvae. Aquaculture 62: 281–288.
Hendeson, R.J., Tocher, D. R., 1987. The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research 26: 281-347.
Hochstein, P., Ernster, L., 1963. ADP-activated lipid peroxidation coupled to the TPNH oxidase system of microsomes. Biochemical and Biophysical Research Communications 12: 388-394.
Huang, C.H., Huang, M.C., Hou, P.C., 1998. Effect of dietary lipids on fatty acid composition and lipid peroxidation in sarcoplasmic reticulum of hybrid tilapia, Oreochromis niloticus × O. aureus. Comparative Biochemistry and Physiology Part B 120: 331-336.
Huang, C.H., Huang, S.L., 2004. Effect of dietary vitamin E on growth, tissue lipid peroxidation, and liver glutathione level of juvenile hybrid tilapia, Oreochromis niloticus×O. aureus, fed oxidized oil. Aquaculture 237: 381-389.
Huang, C.H., Lin, W.Y., Chu, J.H., 2005. Dietary lipid level influences fatty acid profiles, tissue composition, and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis. Comparative Biochemistry and Physiology Part A 142: 383-388.
Kanner, J.G., Kinsella, J.E., Kinsella, J.E., 1987. Initiation of lipid peroxidation in biological system. CRC Critical Reviews in Food Science and Nutrition 25: 317-364.
Kitajka, K., Buda, C., Fodor, E., Halver,J.E.,Farkas, T., 1996. Involvement of phospholipid molecular species in controlling structural order of vertebrate brain synoptic membranes during thermal evolution. Lipids 31: 1045-1050.
Knauer, J., Southgate, P.C., 1997. Growth and fatty acid composition of Pacific oyster (Crassostrea gigas) spat fed a spray-dried freshwater microalga (Spongiococcum excentricum) and microencapsulated lipids. Aquaculture 154: 293-303.
Krienitz, L., Wirth, M., 2006. The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica - Ecology and Management of Inland Waters 36: 204-210.
Kubo, K., Satio, M., Tadokoro, T., Maekawa, A., 1997. Changes in susceptibility of tissues to lipid peroxidation after ingestion of various levels of docosahexaenoic acid and vitamin E. The British Journal of Nutrition 78: 655-669.
Lao, B.S., Sheng, G.Y., Fu, J.M., Wen, K.W., Zhang, G., Min, Y.S., 2001. A study on the contents of fat and fatty acids in five shellfishes. Chinese Journal of Chromatography 19: 137-140 (in chinese)
Lin, Y.R., Huang, S.L., Huang, C.H., 2003. Characteristics of NADH-dependent lipid peroxidation in sarcoplasmic reticulum of white shrimp, Litopenaeus vannamei, and freshwater prawn, Macrobrachium rosenbergii. Comparative Biochemistry and Physiology Part B 135: 683-687.
Lin, Y.R., Huang, C.H., 2007. Fatty acid composition and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis, fed different dietary lipid sources. Comparative Biochemistry and Physiology Part C 144: 327-333.
Lin, T.S., Hultin, H.O.,1976. Enzymic lipid peroxidation in microsomes of chicken skeletal muscle. Journal of Food Science 41: 1488-1489.
MacDonald, B.A., 1988. Physiological energetics of Japanese scallop Patinopecten yessoensis larvae. Journal of Experimental Marine Biology and Ecology 120: 155-170.
Mart�瀋ez-Fern�鴨dez, E., Acosta-Salm�曝, H., Southgate, P.C., 2006. The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera, L.) larvae. Aquaculture 257: 491-503.
McDonald, R.E., Kelleher, S.D., Hultin, H.O., 1979. Membrane lipid oxidation in a microsomal fraction of red hake muscle. Journal of Food Biochemistry 3: 125.
Murray, R.K., Granner, D.K., Mayes, O.A., Rodwell, V. W., 1990. Harper’s Biochemistry. 22th Ed., Appleton and Lange, California, U. S. A.
McDonald, R.E., Hultin, H.O., 1987. Some characteristics of the enzymic lipid peroxidation system in the microsomal fraction of flounder skeletal muscle. Journal of Food Science 52: 15-21, 27.
Miller, D.M., Buettner, G.R. and Aust, S.D., 1990. Transition metals as catalysts of “Autoxidation” reactions. Free Radical Biology & Medicine 8: 95-108.
Minotti, G., Aust, S.D., 1987. An investigation into the mechanism of citrate-Fe2+ dependent lipid peroxidation. Free Radical Biology & Medicine 3: 379-387.
Nell, J.A., O'Connor, W.A., 1991. The evaluation of fresh algae and stored algal concentrates as a food source for Sydney rock oyster, Saccostrea commercialis (Iredale & Roughley), larvae. Aquaculture 99: 277-284.
O'Connor, W.A., Nell, J.A., Diemar, J.A., 1992. The evaluation of twelve algal species as food for juvenile Sydney rock oysters Saccostrea commercialis (Iredale & Roughley). Aquaculture 143: 277-283.
Orban, E., Gabriella Di Lena, Nevigato, T., Casini, I., Caproni, R., Santaroni, G., Giulini, G., 2007. Nutritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic Sea. Food Chemistry 101: 1063-1070.
Parihar, M.S., Dubey, A.K., 1995. Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase. Comparative Biochemistry and Physiology Part C 112: 309-313.
Petkov, G., Garcia, G., 2007. Which are fatty acids of the green alga Chlorella?. Biochemical Systematics and Ecology 35: 281-285.
Ponis, E., Robert, R., Parisi, G., 2003. Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture 221: 491-505.
Renaud, S.M., Thinh, L.V., Parry, D.L., 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170: 147-159.
Rhee, K.S., Dutson, T.R., Smith, G.C., 1984. Enzymic lipid peroxidation in microsomal fractions from beef skeletal muscle. Journal of Food Science 49: 675-679.
Rivero-Rodr�櫂uez, S., Beaumont, A.R., Concepci�曝 Lora-Vilchis, M., 2007. The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 263: 199-210.
Rosenlund, G., Obach, A., Standal, H., Tveit, K., 2001. Effect of alternative lipid source on long-term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquaculture Research 32: 323-328.
Ruiz-Azcona, P., Rodr�櫂uez-Sierra, R., Mart�瀋, J.B., 1996. Culture of coquina clam, Donax trunculus, larvae. Aquaculture 143: 151-155.
Schafer, F.O., Buettner, G.R., 2000. Acidic pH amplifies iron-mediated lipid peroxidation in cells. Free Radical Biology & Medicine 28: 1175-1 181.
Schaich, K.M., 1992. Metals and lipid oxidation, Contemporary issues. Lipids 27: 209-218.
Shiau, S.Y., Shiau, L.F., 2001. Revaluation of the vitamin E requirement of juvenile tilapia, Oreochromis niloticus×O. aureus. Animal Science 72: 477-482.
Soudant, P., Marty, Y., Moal, J., Robert, R., Que´re´, C., Le Coz, J.R., Samain, J.F., 1996a. Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143: 361-378.
Soudant, P., Moal, J., Marty, Y., Samain, J.F., 1996b. Impact of the quality of dietary fatty acids on metabolism and the composition of polar lipid classes in female gonads of Pecten maximus (L.). Journal of Experimental Marine Biology and Ecology 205: 149-163.
Soudant, P., Moal, J., Marty, Y., Samain, J.F., 1997. Composition of polar lipid classes in male gonads of Pecten maximus (L.). Effect of nutrition. Journal of Experimental Marine Biology and Ecology 215: 103-114.
Soudant, P., Marty, Y., Moal, J., Masski, H., Samain, J.F., 1998. Fatty acid composition of polar lipid classes during larval development of scallop Pecten maximus (L.). Comparative Biochemistry and Physiology Part A 12: 279-288.
Soudant, P., Van Ryckeghem, K., Marty, Y., Moal, J., Samain, J.F., Sorgeloos, P., 1999. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part B 123: 209-222.
Soudant, P., Chu, F.L.E., Samain, J.F., 2000. Lipids requirements in some economically important marine bivalves. Journal of Shellfish Research 19: 605.pp
St�聯han, G., Guillaume, J., Lamour, F., 1995. Lipids peroxidation in turbot (Scophthalmus maximus) tissue: effect of dietary vitamin E and dietary n-6 or n-3 polyunsaturated fatty acids. Aquaculture 130: 251-268.
Su, H. M., Su, M.S., Liao.,I.C., 1997a. Collection and culture of live foods for aquaculture in Taiwan. Hydrobiology 358: 37-40.
Su, H. M., Su, M.S., Liao.,I.C., 1997b. Perliminary results of providing various combiniations of live foods to grouper (Epinephelus coioides) larvae. Hydrobiology 358: 301-304.
Tang, B., Liu, B., Wang, G., Zhang, T., Xiang, J., 2006. Effects of various algal diets and starvation on larval growth and survival of Meretrix meretrix. Aquaculture 254: 526-533.
Thompson, P.A., Guo, M.,Paul J. Harrison, P.J., 1996. Nutritional value of diets that vary in fatty acid composition for larval Pacific oysters (Crassostrea gigas). Aquaculture 143: 379-391.
Trenzado, C., Hidalgo, M.C., Garc�朦-Gallego, M., Morales, A.E., Furn��, M., Domezain, A ., Domezain, J., Sanz, A., 2006. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture 254: 758-767.
Tseng, K.Y., Chen, S.M., Huang, C.H. Some characteristics of an iron-catalyzed sarcoplasmic reticular lipid oxidation system in a seawater clam (Meretrix lusoria) and freshwater clam (Corbicula fluminea). Journal of Food Biochemistry (In press).
Waldock, M.J., Holland, D.L., 1984. Fatty acid metabolism in young oysters, Crassostrea gigas: polyunsaturated fatty acids. Lipids 19: 332-336.
Walne, P.R., 1974. Culture of Bivalve Molluscs. 50 years’experience at Conwy. Fishing News Ltd. Surrey, England. 173.pp
Whyte, J.N.C., 1987. Biochemical composition and energy content of six species of phytoplankton used in maricultire of bivalves. Aquaculture 60: 231-241.
Williams, E.E., Hazel, J.R. 1993. The role of docosahexaenoic acid-containing molecular species of phospholipid in the thermal adaptation of biological membranes. In: Essential fatty acids and Eicosanods. A. Sinclair and R. Gordon, eds. American Oil Chemists Society, Champaign, IL. 128-133.
Wikfors, G.H., Patterson, G.W., Ghosh, P., Lewin, R.A., Smith, B.C., Alix, J.H., 1996. Growth of post-set oysters, Crassostrea virginica, on high-lipid strains of algal flagellates Tetraselmis spp. Aquaculture 143: 411-419.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔