(3.236.222.124) 您好!臺灣時間:2021/05/08 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳泓諭
研究生(外文):Hong-Yu Wu
論文名稱:利用錐形光纖以及紫外光微影術製作的波導吸引與傳遞微粒
論文名稱(外文):Using Tapered Optical Fibers and Optical Waveguides Made by UV Lithography to Attract and Transport
指導教授:許芳文
指導教授(外文):Fang-Wen Sheu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:光電暨固態電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:錐形光纖漸逝波光學鑷夾光學吸引光學傳遞紫外光微影術光波導
外文關鍵詞:tapered optical fiberevanescent waveoptical tweezeroptical attractingoptical transportUV lithographyoptical waveguide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們將通訊用單模光纖經由光纖拉引機拉伸成為對稱而無扯斷的錐形光纖,然後放置於稀釋的聚苯乙烯微粒溶液中,並在一端以20X顯微物鏡將980 nm二極體雷射聚焦導入光纖,接著在上方使用CCD攝影機及物鏡觀察微粒。經由觀察可以發現,微粒經過光纖的拉伸區域時,因為漸逝波的關係,將會吸附在光纖表面,並且延著光傳遞方向滾動。另外,我們也利用半導體製程紫外光微影術,將塗佈在波片上的SU-8光阻蝕刻成一長條帶狀波導,以取代錐形光纖波導,並進行同樣的實驗及觀察。相較於傳統光學鑷夾,利用光波導的漸逝波進行粒子的吸引、捕抓以及推動、傳遞具有更大的操控範圍以及更多樣的操控方式。
此外,我們亦利用軟體進行模擬,分別計算出在不同的錐形光纖尺寸和拉伸區域,以及在不同SU-8光阻波導的高度之下,當雷射光在其波導內傳播時對微粒所產生的影響,並與實驗的結果做比較。
In this study, we use a fiber puller to transform a telecom single-mode optical fiber into a symmetric and unbroken tapered optical fiber. Then we put it into a dilute solution of polystyrene microparticles. A 980 nm diode laser is coupled into the tapered optical fiber through a 20X microscope objective lens. Then we use a CCD camera and an objective lens to observe the microparticles from the fiber top. We have observed that, due to the evanescent wave, the microparticles will be attracted onto the surface of the tapered fiber and roll in the direction of light propagation when the microparticles flow near the region of the tapered fiber. In addition, we use the UV lithography technology to make a strip optical waveguide by etching the SU-8 photoresistor coated on a glass plate. Then we perform the same experiment on the microparticle manipulation. Compared with the traditional optical tweezer, the technique of using the evanescent wave out of the optical waveguide to attract and transport the microparticles has more controllable range and more variety in manipulation.
Moreover, we use a software to simulate the various situations in different sections of the tapered fiber and different heights of the SU-8 waveguide, respectively. We simulate the optical influence on the microparticles when the laser light is launched into the waveguide, and make a comparison with the results of the experiment.
摘要 ......I
Abstract ......II
誌謝 ......III
圖目錄 ......VI
表目錄 ......VIII
第一章 緒論 ......- 1 -
1.1 研究背景 ......- 1 -
1.2 研究動機 ......- 2 -
1.3 本文結構簡介 ......- 2 -
2.1 文獻回顧 ......- 3 -
2.2 實驗原理 ......- 8 -
2.3 實驗大綱 ......- 8 -
2.4 實驗儀器以及樣本 ......- 9 -
2.4-1 雷射光源設置 ......- 9 -
2.4-2 實驗儀器 ......- 10 -
2.4-3 光纖樣本 ......- 11 -
2.4-4 流道製作 ......- 12 -
2.5 吸引以及傳遞微粒 ......- 13 -
2.5-1 實驗系統 ......- 13 -
2.5-2 實驗觀察結果 ......- 15 -
2.6 改變影像擷取物鏡 ......- 19 -
2.6-1 實驗系統 ......- 19 -
2.6-2 實驗觀察結果 ......- 20 -
2.7 改變光源 ......- 23 -
2.7-1 實驗系統 ......- 23 -
2.7-2 實驗觀察結果 ......- 24 -
2.8 結論 ......- 30 -
第三章 利用SU-8光阻製作波導 ......- 31 -
3.1 文獻回顧 ......- 31 -
3.2 實驗大綱 ......- 35 -
3.3 SU-8光阻波導製作 ......- 36 -
3.3-1 清洗玻片基板 ......- 36 -
3.3-2 SU-8光阻波導結構製作 ......- 37 -
3.3-3 SU-8光阻波導製作成果 ......- 39 -
3.4 SU-8光阻波導微粒捕抓實驗 ......- 41 -
3.4-1 實驗系統 ......- 41 -
3.4-2 實驗結果 ......- 43 -
3.5 結論 ......- 45 -
第四章 錐形光纖波導、SU-8光阻波導模擬 ......- 47 -
4.1 文獻回顧 ......- 47 -
4.2 工作大綱 ......- 48 -
4.3 模擬模型的建立 ......- 49 -
4.3-1 漸逝場模型架構 ......- 49 -
4.3-2 錐形光纖模型架構 ......- 57 -
4.3-3 SU-8光阻波導模型架構 ......- 66 -
4.4 模擬結果與實驗結果的比較 ......- 74 -
4.4-1 錐形光纖 ......- 74 -
4.4-2 SU-8光阻波導 ......- 76 -
4.5 結論 ......- 77 -
第五章 結論與未來展望 ......- 79 -
5.1 結論 ......- 79 -
5.2 未來展望 ......- 80 -
參考文獻 ......- 81 -
[1]V. Garcés-Chávez and K. Dholakia, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[2]Zhihai Liu, Chengkai Guo, Jun Yang, and Libo Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14, 12510 (2006).
[3]Libo Yuan, Zhihai Liu, Jun Yang, and Chunying Guan, “Twin-core fiber optical tweezers,” Opt. Express 16, 4551 (2008).
[4]http://licht.uni-bonn.de/Projects/meschede.html
[5]Limin Tong, Rafael R. Gattass, Jonathan B. Ashcom, Sailing He, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[6]G. Brambilla, G. Senthil Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041 (2007).
[7]Allen H. J. Yang and David Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19, 045704 (2008).
[8]Bradley S. Schmidt, Allen H. J. Yang, David Erickson, and Michal Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322 (2007).
[9]http://www.hindawi.com/floats/725967/figures/2008.725967.fig1
[10]A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596 (2008).
[11]K. Grujic, O. G. Hellesø, J.S. Wilkinson, J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Com. 239, 227 (2004).
[12]Bahhaa E. A. Saleh, Malvin Carl Teich, “Fundamentals of Photonics,”John Wiley & Sons, 1991.
[13]B. Y. Shew, C. H. Kuo, Y. C. Huang, Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sensors and Actuators A 120, 383 (2005).
[14]K. Grujic and O. G. Hellesø, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13, 1 (2005).
[15]S. Gaugiran, S. Gétin, J. M. Fedeli and J. Derouard, “Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces,” Opt. Express 15, 8146 (2007).
[16]S. Gaugiran, S. Gétin and J. M. Fedeli, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956 (2005).
[17]L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Forces on a Rayleigh Particle in the Cover Region of a Planar Waveguide,” J. Lightwave Technology 18, 388 (2000).
[18]Katarina Grujic and Olav Gaute Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express 14, 6470 (2007).
[19]Víctor Ruiz-Cortés and Juan P. Vite-Frías, “Lensless optical manipulation with an evanescent field,” Opt. Express 16, 6600 (2008).
[20]Satoshi Kawata and Tadao Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Express 17, 772 (1992).
[21]S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768 (1996).
[22]H. Y. Jaising, O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Com. 246, 373 (2005).
[23]A. Zelenina, R. Quidant, D. Petrov, G. Badenes, “Trapping with local evanescent light fields” Proc. SPIE, Vol. 5930, 59301S (2005).
[24]Ganapathy Senthil Murugan, Gilberto Brambilla, James S. Wilkinson, and David J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Japanese Journal of Applied Physics 47, 6716 (2007).
[25]Gilberto Brambilla,Vittoria Finazzi, and David J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258 (2004).
[26]Ratna J. Oetama, John Y. Walz, “Translation of colloidal particles next to a flat plate using evanescent waves,” Physicochem. Eng. Aspects 211, 179 (2002)
[27]Djenan Ganic, Xiaosong Gan, Min Gu, “Parametric study of three-dimensional near-field Mie scattering by dielectric particles,” Optics Communications 216, 1 (2003).
[28]H. Ishikawa, H. Tamaru, and K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802 (2000).
[29]H. Ishikawa, H. Tamaru, and K. Miyano, “Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate,” Opt. Lett. 24, 643 (1999).
[30]Marcelo Lester and Manuel Nieto-Vesperinas, “Optical forces on microparticles in an evanescent laser field,” Opt. Express 24, 936 (1999).
[31]Robert C. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Opt. Express 13, 3707 (2005).
[32]Dianwen Zhang, X.-C. Yuan, S. C. Tjin and S. Krishnan, “Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping,” Opt. Express 12, 2220 (2004).
[33]Kiha Lee, Soon Geun Kwon, Soo Hyun Kim, Yoon Keun Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sensors and Actuators A 136, 154 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔