(3.92.96.236) 您好!臺灣時間:2021/05/06 23:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳桓嘉
研究生(外文):Huan-Chia Wu
論文名稱:豆腐組織結構的參數化分析技術
論文名稱(外文):The Parametric Analysis Technique of Tofu Tissue Structure
指導教授:丁慶華
指導教授(外文):Ching-Hua Ting
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生物機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:豆腐組織影像分析物性穿刺力超音波模型建構
外文關鍵詞:Tofu propertiesImage analysisTextural analysisUltrasoundModelling
相關次數:
  • 被引用被引用:2
  • 點閱點閱:567
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:2
豆腐是由大豆蛋白質與凝結劑凝結經加熱或加壓凝固的膠狀組織,膠狀組織的密實度決定豆腐的質地並間接影響口感。豆腐膠狀組織的特性可以用顯微鏡觀察,其機械特性可以採質地分析(textural analysis)或流變分析(rheological study),但是,這些方法具破壞性且成本高;因此,並不適合做為生產時的線上檢測之用,或是低成本的檢測工具。
自動化食品生產加工中,衛生條件與監控其生產品質是相當地重要;
所以,進行檢測最好的方法,應是非接觸性(non-contact)且是非破壞性(non-destructive)的檢測。因此本研究採用掃描式電子顯微(SEM)影像分析做為膠狀組織密實度的基準,並且搭配物性穿刺力試驗,建立超音波掃描參數與密實度之間的關聯性,進而建構出超音波量測模型。
  經由實驗結果得之,不同種類豆腐的微結構孔面積、超音波衰減係數均具有差異性;且其微結構孔面積與超音波衰減係數呈正相關性,以微觀的角度來對照宏觀理論的豆腐模型與超音波的衰減強度公式的關聯性,達到可以採用超音波做為質地的快速量測工具。
Tofu is a gel-network product made by coagulating soya milk followed by heat or pressure treatment after the addition of a coagulant. The firmness of the network determines the texture and hence the sensation of tofu. The structure of a tofu network can be observed with microscopic analysis and the mechanical properties are obtainable through textural analysis or rheological study. These approaches are destructive and sometime prohibitively expensive and hence they are unsuitable for on-line measurement of tofu properties in a production line.

Hygiene and efficiency are an essential requirement in automated food processing. The best way to avoid contamination in quality measurement of food processing is to use non-contact detectors. Low-power ultrasound and infrared which are emitted from equipment isolated from the target material are a well-studied candidate in food processing, as they do not introduce extraneous contamination nor alter the properties of the substance. Ultrasound propagation in a tofu gel has been demonstrated to be significantly effected by the network structure of the gel. Thus, it is the objective of this study to exploit the use of ultrasound as a nondestructive measurement tool for tofu firmness with scanning electronic microscopic (SEM) and textural analyses as the calibrators.

The exper imental results show a positive correlation exists between the area percentage of network pores and the attenuation coefficient of ultrasound. Hence ultrasound can be a potential candicate for measuring of tofu texture.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 ix
圖目錄 x
符號說明 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機 5
1.4 研究目的 7
第二章 文獻探討 8
2.1 顯微影像觀察於食品質地之應用 8
2.2 超音波非破壞性之檢測技術 10
2.2.1 豆腐的膠體網路結構與黏彈特性 10
2.2.2 超音波在豆腐結構中的衰減 11
2.2.3 超音波在農牧產品之應用 13
2.3 生物材料物性分析之檢測 14
第三章 相關理論分析 15
3.1 豆腐的凝結特性 15
3.2 顯微影像之論述 17
3.2.1 掃描式電子顯微鏡 17
3.2.2 顯微影像的探討 19
3.3 超音波之論述 21
3.3.1 聲波的物理特性 21
3.3.2 超音波的傳播 23
3.3.3 聲射訊號原理與聲場 25
3.4 物性分析之論述 28
第四章 試驗設計與方法 30
4.1 實驗架構 30
4.2 豆腐的製作流程 31
4.3 影像處理分析 32
4.3.1 掃瞄式電子顯微鏡 32
4.3.2 影像處理分析 32
4.4 低頻率超音波 34
4.4.1 超音波換能器 34
4.4.2 活動式TT/PE換能器系統 36
4.4.3 超音波波形擷取 37
4.4.4 超音波波速與衰減係數 39
4.5 單軸物性分析儀 44
4.6 超音波穿刺力實驗 45
4.7 豆腐機械參數實驗 47
4.7.1 掃瞄式電子顯微鏡之觀察 47
4.7.2 超音波對豆腐特性之量測 48
4.7.3 物性穿刺力之量測 51
4.8 豆腐含水率與密度之測定 52
第五章 實驗結果與分析 53
5.1 超音波穿刺力實驗之結果分析 53
5.2 豆腐機械特性之顯著差異水準 55
5.2.1 豆腐的機械特性差異 55
5.2.2 嫩豆腐與板豆腐的結構性差異 57
5.2.3 嫩豆腐與板豆腐的超音波指標差異性 58
5.2.4 嫩豆腐與板豆腐其物性穿刺力之差異性 60
5.3 豆腐機械特性之相關性 61
5.3.1 豆腐機械特性之宏觀相關性 61
5.3.2 豆腐孔面積與超音波衰減係數之相關性 64
5.3.3 豆腐孔面積與超音波波速之相關性 65
5.3.4 豆腐孔面積與物性穿刺力之相關性 67
5.4 豆腐含水率與密度之測定 68
第六章 結論與未來展望 70
6.1 結論 70
6.2 未來研究方向與建議 72
參考文獻 74
附錄一 豆腐SEM照片 83
附錄二 豆腐製作的概略程式 92
吳志仁。2006。利用超音波技術評估阿基里斯腱特性。碩士論文。台南:國立成功大學醫學工程研究所。
黃三龍。1990。豆腐組織與微細結構間的關係。食品工業 22(11), 33-43
陳櫻雪。2006。凝固劑對豆腐質地特性及異黃酮素保留之影響。碩士論文。嘉義:國立嘉義大學食品科學研究所。
Abbott, J. A., Massie, D. R., Upchurch, B. L., Hruschka,W. R., 1995. Nondestructive sonic firmness measurement of apples. Transactions of the ASAE 38, 1461-1466.
Ay, C., Gunasekaran, S., 2003. Numerical method for determining ultrasonic wave diffusivity through coagulating milk gel system. Journal of Food Engineering 58, 103-110.
Benedito, J., Carcel, J., Clemente, G., Mulet, A., 2000. Cheese maturity assessment using ultrasonics. Journal of Dairy Science 83, 248-254.
Arltoft, D., Ipsen, R., Madsen, F., de Vries, J., 2007. Interactions between carrageenans and milk proteins: a microstructural and rheological study. Biomacromolecules 8, 729-736.
Berry, G. P., Bamber, J. C., Armstrong, C. G., Miller, N. R., Barbone, P. E., 2006. Towards an acoustic model-based poroelastic imaging method: I. theoretical foundation. Ultrasound in Medicine and Biology 32, 547-567.
Blitz, J., 1968. Fundamentals of Ultrasonics, 2nd Edition. Plenum Press, New York.
Cai, T. D., Chang, K. C., 1998. Characteristics of production-scale tofu as affected by soymilk coagulation method: propeller blade size, mixing time and coagulant concentration. Food Research International 31, 289-295.
Carstensen, L., Schwan, J., 1953. The Journal of the Acoustical Society of America 25, p286.
Chang, C. C., Wang, L. L., 1997. A fast multilevel thresholding method based on lowpass and highpass filtering. Pattern Recognition Letters 18, 1469-1478.
Cheng, Y., Shimizu, N., Kimura, T., 2005. The viscoelastic properties of soybean curd (tofu) as affected by soymilk concentration and type of coagulant. International Journal of Food Science and Technology 40, 385-390.
Cho, B. K., Irudayaraj, J. M. K., 2003. A noncontact ultrasound approach for mechanical property determination of cheeses. Journal of Food Science 68, 2243-2247.
Christensen, 1988. Ultrasonic Bioinstrumentation, Wiley, New York.
Clevenger, J. T., Hamann, D. D.,1968. The behavior of apple skin under tensile loading. Transactions of the ASAE 11, 34-37.
de Man, J. M., de Man, L., Gupta, S., 1986. Texture and microstructure of soybean curd (tofu) as affected by different coagulants. Food Microstructure 5, 83-89.
de Wit, P., 2001. Amazing soy. The World of Ingredients 6, 52.
Dukhin, A. S., Goetz, P. J., Travers, B., 2005. Use of ultrasound for characterizing dairy products. Journal of Dairy Science 88, 1320-1334.
Dwyer, C., Donnelly, L., Buckin, V., 2005. Ultrasonic analysis of rennet-induced pre-gelation and gelation processes in milk. Journal of Dairy Research 72, 303-310.
Engert, F., Bonhoeffer, T., 1999. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66-70.
Fidelibus, M. W., Teixeira, A. A., Davies, F. S., 2002. Mechanical properties of orange peel and fruit treated pre-harvest with gibberellic acid. Transaction of the ASAE 45, 1057-1062.
Foegeding, E. A., Brown, J., Drake, M., Daubert, C. R., 2003. Sensory and mechanical aspects of cheese texture. International Dairy Journal 13, 585-591.
Fox, P., Smith, P. P., Sahi, S., 2004. Ultrasound measurements to monitor the specific gravity of food batters. Journal of Food Engineering 65, 317-324.
Finney, E. E., Hall, C. W., Mase, G. E., 1964. Theory of linear viscoelasticity applied to potato. Journal of Agricultural Engineering Research 9, 307-312.
Gan, T. H., Pallav, P., Hutchins, D. A., 2006. Non-contact ultrasonic quality measurements of food products. Journal of Food Engineering 77, 239-247.
Gur, C. H., Ogel, B., 2001. Non-destructive microstructural characterization of aluminium matrix composites by ultrasonic techniques. Materials Characterization 47, 227-233.
Hall, C. E., 1953. Introduction to electron microscopy, 2nd edition, McGraw-Hill.
Hou, H. J., Chang, K. C., Shih, M. C., 1997. Yield and textural properties of soft tofu as affected by coagulation method. Journal of Food Science 62, 824-827.
Hueter, T. F., Morgan, H., Cohen, M. S., 1953. Ultrasonic attenuation in biological suspensions. Journal of Acoustic Society of America 25, 1200-1201.
Hurng, H. Y., Lu, F. M., Ay, C., 2007. Evaluating and modeling physiological tissue texture of mango immersed in water by using ultrasonics. International Agricultural Engineering Journal 16, 1-13.
Jackson, C. J., Dini, J. P., Lavandier, C., Rupasinghe, H. P. V., Faulkner, H., Poysa, V., Buzzell, D., DeGrandis, S., 2002. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Seminars in Food Analysis 37, 1117-1123.
Kao, F. J., Su, N. W., Lee, M. H., 2003. Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. Journal of Agricultural Food Chemistry 51, 6211-6216.
Kaye, G. W. C., Laby, T. H., 1972. Table of physical and chemical constants. p62. London: Willian clowes and sons.
Kohyama, K., Nishinari, K., 1993. Rheological study on gelation process of soybean 7s and 11s protein in the presence of glucono-��-lactone. Journal of Agricultural and Food Chemistry 41, 8-14.
Kohyama, K., Sano, Y., Doi, E., 1995. Rheological characteristics and gelation mechanism of tofu (soybean curd). Journal of Agricultural and Food Chemistry 43, 1808-1812.
Knorr, D., Zenker, M., Heinz,V., Lee, D., 2004. Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology 15, 261-266.
Kuo, F. J., Sheng, C. T., Ting, C. H., 2008. Evaluation of ultrasonic propagation to measure sugar content and viscosity of reconstituted orange juice. Journal of Food Engineering 86, 84-90.
Kuster, G. T., Toksoz, M. N., 1974. Velocity and attenuation of seismic waves in two phase media. Geophysics 39, 587-617.
Laissue, P. P., Reiter, C. P., Hiesinger, R., Halter, S., Fischbach, K. F., Stocker, R. F., 1999. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. The Journal of Comparative Neurology 405, 543-552.
Lee, S., Pyrak-Nolte, L. J., Campanella, O., 2004. Determination of ultrasonic-based rheological properties of dough during fermentation. Journal of Texture Studies 35, 33-51.
Liu, K. S., 1999. Soybeans chemistry, technology and utilization. Maryland: Aspen Publishers.
Liu, Z. S., Chang, S. K. C., Li, L. T., Tatsumi, E., 2004. Effect of selective thermal denaturation of soybean proteins on soymilk viscosity and tofu’s physical properties. Food Research International 37, 815-822.
Llull, P., Simal, S., Femenia, A., Benedito, J., Rossell, C., 2002. The use of ultrasound velocity measurement to evaluate the textural properties of sobrassada from mallorca. Journal of Food Engineering 52, 323-330.
Lucey, J. A., Tamehana, M., Singh, H., Munro, P. A., 2001. Effect of heat treatment on the physical properties of milk gels made with both rennet and acid. International Dairy Journal 11, 559-565.
Maness N. O., Brusewitz, G. H., McCollum, T. G., 1992. Internal variation in peach fruit firmness. Horticultural Science 27, 903-905.
McClements, D. J., 1995. Advances in the application of ultrasound in food analysis and processing. Trends in Food Science and Technology 6, 293-299.
Mizrach, A., Galili, N., Rosenhouse, G., 1989. Determination of fruit and vegetable properties by ultrasonic excitation. Transactions of the ASAE 32, 2053-2058.
Moizuddin, S., Johneson, L. D., Wilson, L. A., 1999. Rapid method for determining optimum coagulant concentration in tofu manufacture. Journal of Food Science 64, 684-687.
Mohsenin, N. N., 1986. Physical properties of plant and animal materials, 2nd Edition. Science Publishers, New York.
Morrow, C. T., Mohsenin, N. N., 1966. Consideration of selected agricultural products as viscoelastic materials. Journal of Food Science 31, 686-698.
Noh, E. J., Park, S. Y., Pak, J. I., Hong, S. T., Yun, S. E., 2005. Coagulation of soymilk and quality of tofu as affected by freeze treatment of soybeans. Food Chemistry 91, 715-721.
Pinder, A. C., Godfrey, G., 1993. Food process monitoring systems. London: Blackie Academic and Professional.
Saio, K., 1979. Tofu-relationships between texture and fine structure. Cereal Foods World 24, 342-354.
Saowapark, S., Apichartsrangkoon, A., Bell, A. E., 2008. Viscoelastic properties of high pressure and heat induced tofu gels. Food Chemistry 107, 984-989.
Shung, K. K., Thieme, G. A., 1993. Ultrasonic scattering in biological tissues, CRC Press, Boca Raton.
Shurtleff, W., Aoyagi, A., 1979. Tofu and Soymilk Production: The Book of Tofu, Volume 2. The Soyfoods Center, Lafayette, CA., p115.
Ting , C. H., Kuo, F. J., Lien, C. C., Sheng, C. T., 2009. Use of ultrasound for characterizing the gelation process in heat induced CaSO4•2H2O tofu curd. Journal of Food Engineering 93, 101-107.
Toubal, M., Nongaillard, B., Radziszewski, E., Boulenguer, P., Langendorff, V., 2003. Ultrasonic monitoring of sol-gel transition of natural hydrocolloids. Journal of Food Engineering 58, 1-3.
Wang, H. J., Murphy, P. A., 1996. Mass balance study of isoflavone during soybean processing. Journal of Agricultural and Food Chemistry 44, 2377-2383.
Wang, Q., Rademacher, B., Sedlmeyer, F., Kulozik, U., 2005. Gelation behaviour of aqueous solutions of different types of carrageenan investigated by low-intensity-ultrasound measurements and comparison to rheological measurements. Innovative Food Science and Emerging Technologies 6, 465-472.
Wang, J. K., Chang, H. S., 1970. Mechanical properties of papaya and their dependence on maturity. Transactions of the ASAE 13, 369-371.
O’Brien Jr., W. D., 2007. Ultrasound-biophysics mechanisms. Progress in Biophysics and Molecular Biology 93, 212-255.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔