跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許志恭
論文名稱:VAE對橡膠水泥砂漿力學性能影響之研究
論文名稱(外文):Effect of rubber addition on the Mechanical properties of VAE-modified mortars
指導教授:周良勳周良勳引用關係
指導教授(外文):Liang-Hsiung Chou
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:土木與水資源工程學系研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:乙烯-醋酸乙烯共聚合物水泥砂漿抗壓強度掃描式電子顯微鏡
外文關鍵詞:Rubbercontacts angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
因為橡膠與水泥材料各自為疏水性及親水性材料,混合應用上常會發生許多界面上的問題,而使橡膠混凝土的使用性能降低。乙烯-醋酸乙烯共聚合物再乳化性粉末(VAE)是一種多用途之聚合物粉,一般使用於建築材料和當作結合劑使用。而在一般之水泥砂漿配方中,VAE添加量於水泥中之用量約為5-20(wt%),可改善水泥接著力、抗彎強度、抗磨耗和工作性等。有鑑於此,本研究分別使用濃度5%、10%、15%的VAE作為橡膠與水泥材料界面的改性材料。研究中分別藉由表面接觸角(Contact angle)試驗、流度試驗、水泥砂漿機械強度試驗、吸水率試驗及掃描式電子顯微鏡(SEM)試驗,來探討材料界面結合機制及材料性能。研究結果發現,水泥砂漿摻入VAE可提高橡膠表面親水性能,並增加使砂漿的黏著性。在橡膠取代細骨材用量為3%、6%、9%時,其抗壓強度會隨著VAE摻入量而些微下降,而抗彎強度將會明顯提升約15~86%。在吸水率試驗結果上,VAE及橡膠的摻入皆能增加水泥砂漿之防水抗滲性能。此外,微觀性質分析方面顯示,橡膠表面有助於水泥水化物生長,使混凝土試體之防水性能增加。
關鍵字:乙烯-醋酸乙烯共聚合物、水泥砂漿、抗壓強度、掃描式電子顯微鏡
摘要 i
Abstract ii
表目次 v
圖目次 vi
第ㄧ章 緒論 1
1-1 研究動機 1
1-2 研究目的 3
1-3 研究概述 5
1-4 研究規劃 6
第二章 文獻回顧 8
2-1 水泥組成與水化產物 8
2-1-1 水泥製造之組成 11
2-1-2 水泥之水化反應作用 15
2-1-3 水化產物之結構及其性質 17
2-1-4 孔隙及其結構 19
2-2 輪胎組成與處理現況 21
2-2-1 廢輪胎的回收問題 21
2-2-2 廢輪胎的組成 26
2-2-3 橡膠之一般特性 29
2-2-4 國外應用廢舊輪胎的多樣性 30
2-3 骨材對水泥砂漿的影響 32
2-4 廢棄橡膠材添加至水泥混凝土製品之應用 34
2-4-1 新拌橡膠混凝土性質 35
2-4-2 橡膠混凝土材料力學性能 35
2-5 高分子應用於混凝土材料中之影響 38
2-6 添加其他材料對水泥界面之影響 42
第三章 試驗與方法 45
3-1 試驗材料及樣品準備 45
3-2 儀器設備 51
3-3 實驗方法 61
3-4 微觀性質試驗 69
第四章 結果與討論 71
4-1 物理與機械強度試驗結果分析 71
4-2 微觀試驗結果分析 94
4-3 討論 102
第五章 結論與建議 104
5-1 結論 104
5-2 建議 106
參考文獻 107
1.Afridi, M.U.K., Y. Ohama, M. Zafar. Iqbal, K. Demura (1995) Water Retention and Adhesion of Powdered and Aqueous Polymer-Modified Mortars, Cement and Concrete Composites Volume: 17, Issue: 2, pp. 113-118.
2.Ali, N.A., A.D. Amos, and M. Roberts (1993) Use of ground rubber tires in portland cement concrete., Proc. Int. Conf. Concrete 2000, pp.379-390.
3.Barret, P.; D. J. Bertrandie, Chim. PHys. (1986) Fundamental hydration kinetic features of the major cement constituents: C3S and b-C2S, Volume:83, pp.765-775.
4.Biel, T.D., Lee, H. (1996) Magnesium oxychloride cement concrete with recycled tire rubber. Transportation Research Record No. 1561, Transportation Research Board, Washington, DC, pp. 6–12
5.Brandt, A.M. and M. Marks (1996) Optimization of the Material Structure and Composition of Cement Based Composites, Cement and Concrete Composites Volume: 18, Issue: 4,pp. 271-279.
6.Buekett, John (1998) International Admixture Standards, Cement and Concrete Composites Volume: 20, Issue: 2-3, pp. 137-140.
7.Carlos Negro, Luis M. S´anchez, Elena Fuente, Angeles Blanco, Julio Tijero (2006) Polyacrylamide induced flocculation of a cement suspension, Chemical Engineering Science Volume: 61 pp.2522 – 2532
8.Ce´dric Plassard, Eric Lesniewska, Isabelle Pochard and Andre´ Nonat (2005) Nanoscale Experimental Investigation of Particle Interactions at the Origin of the Cohesion of Cement., Langmuir Volume :21, pp.7263-7270
9.Chou L.H. , Lu C.K. , Chang J.R. &Lee M.T. (2007) : Use of Waste Rubber as Concrete Additives., Waste Management & Research, 25, 65-76.
10.Eldin, N.N. and A. B. Senouci, (1993), Use of Scrap Tires in Road Construction, J. Constr. Eng., Vol.118, No.3, pp.1217-1232.
11.Fattuhi, N.I., and L. A. Clark (1996) Cement-based materials containing shredded scrap truck tyre rubber, Construction and Building Materials Volume: 10, Issue:4, 229-236.
12.Fedroff, D., Ahmad, S., Savas, B.Z. (1996) Mechanical properties of concrete with ground waste tire rubber. Transportation Research Board, Report No. 1532, Transportation Research Board, Washington, DC, pp. 66–72
13.Figovsky, O., D. Beilin, N. Blank, J. Potapov, V. Chernyshev (1996) Development of Polymer Concrete with Polybutadiene Matrix, Cement and Concrete Composites Volume: 18, Issue: 6, , pp. 437-444.
14.Gao J.M. , C.X. Qian B. Wang, K. Morino (2002) Experimental study on properties of polymer-modified cement mortars with silica fume, Cement and Concrete Research Volume: 32, Issue: 1, January, pp. 41-45.
15.Hernandez-Olivares F. & Barluenga G. (2004) : Fire performance of recycled rubber-filled high-strength concrete. Cement and Concrete Research, 34, 109-117.
16.Hernandez-Olivares F., Barluenga G., Bollati M.& Witoszek (2002) : Static and dynamic behavior of recycled tire rubber-filled concrete, Cement and Concrete Research, 32, 1587-1596.
17.Hughes, B.P. and B. Roller Lubis (1996) Compacted Sheets of Polymer Modified Mortar, Cement and Concrete Composites Volume: 18, Issue: 1, pp. 41-46.
18.Huynh, H. and D. Raghavan (1997) Durability of simulated shredded rubber tire in highly alkaline environments, Advanced Cement Based Materials Volume: 6, Issue: 3-4, pp. 138-143.
19.JPK (2004) The Nanowizard AFM Hand book Verion1.1, Nantechnology for Life Scicnce.
20.Khatib, Z. K., F.M. Bayomy, (1999) Rubberized Portland cement concrete. ASCE Journal of Materials in Civil Engineering 11 (3) 206-213.
21.Lee, B.I., L. Burnett, T. Miller, B. Postage, and J. Cuneo (1993) Tire rubber/cement matrix compositions. Journal of Material Science, Letter, 12, 967-968.
22.Lee, H.S., H. Lee, J.S. Moon, and H.W. Jung (1998) Development of tire-added latex concrete, ACI Materials Journal, 95 (4) 356-364.
23.Morlat, R., P. Godard, and Y., Orange Bomal (1999) G.Dynamic mechanical thermoanalysis of latexes in cement paste, Cement and Concrete Research Volume: 29, Issue: 6, pp. 847-853.
24.Naik, T.R. & Sigh S.S. (1991) : Utilization of discarded tires as construction materials for transportation facilities. Report No. CBU-1991-02, UWM Center for By-products Utilization, University of Wisconsin-Milwaukee, 49 pp.
25.Neubauer, C.M., Ming. Yang and Hamlin M. Jennings (1998) Interparticle Potential and Sedimentation Behavior of Cement Suspensions: Effects of Admixtures, Advanced Cement Based Materials Volume: 8, Issue:1 , pp. 17-27.
26.Ollitrault-Fichet R., C. Gauthier, G., Clamen and P. Boch (1998) Microstructural aspects in a polymer-modified cement, Cement and Concrete Research Volume: 28, Issue: 12, pp. 1687-1693.
27.PHys J., D: Appl. Phys (2002) AFM investigation of cement paste in humid air at different relative humidities L25–L28
28.Pierce, C. E. and M. C. Blackwell (2003) Potential of scrap tire rubber as lightweight aggregate in flow able fill, Waste Management Volume: 23, Issue: 3, , pp. 197-208.
29.Raghavan, D. ,H. Huynh, and C. F. F erraris, 1998, Workability, Mechanical Properties and Chemical Stability of a Recycled Tyre Rubber-filled Cementitious Composit, J. Mater. Sci., Vol.33, pp.1745-1752.
30.Rai U.S., R.K. Singh (2005) , Effect of Polyacrylamide on the different propertiesof cement and mortar, Materials Science and Engineering A Volume: 392 pp.42–50
31.Rostami, H., Lepore, J., Silverstraim, T., Zundi, I. (1993) Use of recycled rubber tires in concrete. In: Dhir, R.K. (Ed.) Proceedings of the International Conference on Concrete 2000, University of Dundee, Scotland, UK, pp. 391–399
32.Segre N.I. (2000) Joekes, Use of tire rubber particles as addition to cement Cement and Concrete Research, Volume:30 paste,1421-1425
33.Segre, N. and I. Joekes (2000) Use of tire rubber particles as addition to cement paste, Cement and Concrete Research Volume: 30, Issue:9, pp. 1421-1425.
34.Topçu, Ilker Bekir (1995) The properties of rubberized concretes, Cement and Concrete Research Volume: 25, Issue2, pp. 304-310.
35.Topçu, Ilker Bekir (1995) The properties of rubberized concretes, Cement and Concrete Research Volume: 25, Issue2, pp. 304-310.
36.Topçu, Ilker Bekir (1997) Assessment of the brittleness index of rubberized concretes, Cement and Concrete Research Volume: 27, Issue:2, , pp. 177-183.
37.Tsao T. C. R., D. C. Winchester, H. N. (1999) Pham In Proceedings of International Symposium on Strategic Planning and Technical Development for Recycling of Scrap Tires, Taipei, Taiwan, May23-24, pp.2-1~44
38.Uchikawa, Hiroshi., Daisuke. Sawaki and Shunsuke Hanehara (1995) Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste, Cement and Concrete Research Volume: 25, Issue: 2, pp. 353-364.
39.Viallis-Terrisse, H.; Nonat, A. et al. J. Colloid Interface Sci. (2001) Volume:244, pp.58-65
40.Yang T, Keller B and Magyari E (2001) Research Report, ETH Z¨urich.
41.Yang, M., C.M. Neubauer and H.M. Jennings (1997) Inter-particle potential and sedimentation behavior of cement suspensions. , Advanced Cement Based Materials, Volume:5,pp.1-7
42.Zhong, Shiyun., Meilun. Shi, and Zhiyuan Chen, (2002) , A study of polymer-modified mortars by the AC impedance technique, Cement and Concrete Research Volume: 32, Issue: 6, pp. 979-982.
43.Young,(2000),「土木工程材料-科學與應用」,謝素蘭譯,五南圖書出版有限公司。
44.沈永年、王和源、林仁益、郭文田,2004,混凝土技術,全華科技圖書股份有限公司。
45.周良勳,2005,橡膠混凝土界面轉移區特性之研究,中興大學水保系論文。
46.林俊男,2007,以有機硫做橡膠表面改質之研究,國立嘉義大學土木與水資源工程學系碩士論文。
47.林建志,2002,水泥砂漿材料強度參數C、Φ值之研究,國立台北科技大學土木與防災研究所碩士論文。
48.林振雄,2003,廢棄輪胎在水土保持工程的應用,國立東華大學自然資源管理研究所碩士論文。
49.林凱隆,趙雅涵,徐宏曳,鄭敬融,曾奕翔,黃志忠,焚化飛灰與下水污泥熔熔渣漿體之耐久性研究,經濟部,2007年產業綠色技術研討會,P397-409。
50.邱垂德、潘昌林,2001廢輪胎在公共工程之應用,廢棄物在工程上之應用,台灣營建研究院,P19~53。
51.洪書玲,2004,輕質骨材與水泥砂漿界面之微結構特性及分析,國立成功大學土木工程研究所碩士論文。
52.張文瑞,1996,乙烯丙烯二烯橡膠之力學行為研究,國立成功大學土木工程研究所碩士論文。
53.許順珠、黃英傑、陳冠中、鄭耀文,2005,國內外回收處理技術與再生應用市場之比較與分析,環保署研究報告。
54.黃兆龍,1997,混凝土性質與行為,詹氏書局。
55.黃祥泰,2007,利用聚丙烯醯胺改質橡膠添加於水泥砂漿之研究,國立嘉義大學土木與水資源工程學系碩士論文。
56.黃惠忠等作,2003,「奈米材料分析」,滄海書局。
57.黃朝琴,2002,廢橡膠固化技術開發,國立中正大學化學工程研究所碩士論文。
58.楊智強,2001,混凝土中水泥砂漿和顆粒骨材界面特性之研究,國立交通大學土木工程研究所碩士論文。
59.廖國裕,2004,混凝土中骨材與水泥將界面處過度區性質與耐久性之研究,國立交通大學土木工程研究所博士論文。
60.蔡英明,1999,屑化橡膠混凝土配比及工程性質之研究,朝陽科技大學碩士論文。
61.盧俊谷,2006,橡膠於水泥砂漿中之力學特性探討,國立嘉義大學土木與水資源工程研究所碩士論文。
62.羅文政,2005,原型廢輪胎在疊塊式加勁擋土牆之牆面版研究,國立嘉義大學土木與水資源工程學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊