跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭時任
研究生(外文):Shi-Ren Zheng
論文名稱:中低溫梯度接合型熱電材料之研究
論文名稱(外文):Investigation of the gradient-typed thermoelectric materials for intermediate- and low-temperature applications
指導教授:郭永綱
指導教授(外文):Yong-Kang Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:135
中文關鍵詞:梯度熱電ZT值
外文關鍵詞:ZTgradientthermoelectric
相關次數:
  • 被引用被引用:2
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:0
傳統上熱電模組於p與n型都各選用一種材料,較新穎的是選用兩種材料的直接接合型,其雖然有提高熱電轉換之優勢,但溫度梯度之環境下,熱應力破壞是十分重要的問題。而梯度接合型熱電材料之接合,利用與熱源端採用中溫型熱電材料,遠離熱端採用常溫型熱電材料,其間是中、常溫型組成梯度變化的區域,此設計不僅可以有最佳的熱能使用率,也可以改善直接接合型其接合面熱應力較高與潛在應力破壞之缺點。
本論文採用梯度接合型材料的觀念,可應用於製作p/n熱電模組。p型熱電材料,一端是中溫型 PbTe ,另一端是常溫型 (Bi0.4Sb1.6)Te3 熱電材料;n型熱電材料,一端是中溫型 0.8% PbI2 摻雜之 PbTe ,另一端是常溫型 Bi2Te3 熱電材料;二端之間是組成梯度變化的混合型熱電材料。實驗結果顯示,Bi2Te3/PbTe 是穩定的組合,不會產生化學反應。本實驗成功完成n型梯度熱電材料75%Pb(Te,I)-25%Bi2Te3/Bi2Te3與p型梯度熱電材料75%PbTe-25%(Bi0.4Sb1.6)Te3/(Bi0.4Sb1.6)Te3之製作,並進行p與n型梯度接合型熱電材料熱物理性質的量測與熱電性質的探討。
The thermoelectric materials (TEs) can convert heat into electrical energy. The thermoelectric devices with the advantage of no use of mechanical parts and the solid units have been used in electrical refrigeration and power generation in certain circumstance. On the other hand, the conversion of waste heat into electrical energy may play an important role in our current challenge to develop alternative energy technologies to reduce our dependence on fossil fuels and greenhouse gas productions.
Thermoelectric modules have one side with p-type TE and the other side with n-type one. The directly bonded thermoelectric modules intergrate different temperature-ranged TEs on each side in order to obtain a better thermoelectric performance. However, they usually have a thermally induced failure at the bonded interface. The thermal fracture can be prevented by considering the gradient-type structure in the modules design.
In this thesis, we have successfully fabricated the gradient-type TE modules, with one side of PbTe and the other side of Bi2Te3. Their n-type and p-type counterparts can be obtained by PbI2 and Sb doping for PbTe and Bi2Te3, respectively. In addition to the gradient TE modules, the directly bonded TE modules were also fabricated for the purpose of comparisons. The thermoelectric properties, including electrical resistivity, thermal conductivity, and Seebeck coefficient, of single phase TEs, bonded TEs, and the gradient TEs were performed to evaluate the thermoelectric performance of these TEs.
誌 謝 I
摘 要 III
Abstract IV
目 錄 V
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1.1 熱電材料 1
1.2 研究動機及目的 3
第二章 理論基礎與文獻回顧 7
2.1 熱電材料熱電轉換基礎理論 7
2.1.1 Seebeck效應 7
2.1.2 Peltier效應 9
2.1.3 Thomson效應 10
2.2 基礎原理 11
2.2.1 電阻率 11
2.2.2 熱傳導率 14
2.2.2.1 聲子對熱傳導的影響 15
2.2.2.2 電子對熱傳導的影響 18
2.2.3 Seebeck係數 19
2.3 文獻回顧 21
2.3.1 熱電材料介紹 23
2.3.1.1 碲化鉍(Bi2Te3)熱電材料 24
2.3.1.2 PbTe熱電材料 27
2.3.1.3 二元合金熱電材料 29
第三章 實驗方法及步驟 33
3.1 塊材製備 35
3.2 顯微結構與成分分析 37
3.2.1 掃描式電子顯微鏡(SEM) 37
3.2.2 X-Ray繞射分析(XRD) 37
3.2.3 能量分散光譜儀(EDS) 37
3.3 熱電特性量測 38
3.3.1 低溫冷卻系統 38
3.3.2 熱傳導率量測 39
3.3.3 Seebeck係數量測 42
3.3.4 電阻率量測 43
3.4 實驗控制程式 44
第四章 實驗結果與討論 51
4.1 結晶品質與成份分析 51
4.1.1 SEM、X-ray繞射及樣品外觀結果分析 51
4.1.2 EDS分析結果 84
4.2 材料熱電性質分析 89
4.2.1 電阻率 89
4.2.2 熱傳導率 98
4.2.3 Seebeck係數 107
4.2.4 熱電優值 118
4.3 材料可靠度分析 128
第五章 結論 131
參考文獻 133
1. B.C. Sales, Science, 295 (2002), pp. 1248-1249.
2. G.A. Slack, in CRC Handbook of Thermoelectrics, ed. by D. M. Rowe (CRC Press, Boca Raton, FL, 1995) p. 407.
3. G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Appl. Phys. Lett., 73,176 (1998).
4. M.G. Kanatzidis and K.R. Poeppelmeier, Prog. Solid State Chem. 36 (2007), pp. 40
5. L.R. Testardi, P.J. Stiles,and E. Burstein, Solid State Communications, 1, 28 (1963).
6. D. M. Rowe and C. M. Bhandari, "Modern Thermoelectronics" (Holt, Rinehart, and Winston, London, 1983).
7. L.D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 47, 12727 (1993).
8. J.J. Ritter and P. Maruthamuth, Inorg. Chem., 34, 4278 (1995).
9. J. R. Ritter, Inorg. Chem., 33, 6419 (1994).
10. A. Giani, f. Pascal-Delannoy, A. Boyer, a. Foucaran, M. Gschwind, P. Ancey, Thin Solid Films, 303, 1 (1997).
11. P. Magri, C. Boulanger and J.-M. Lecurie, J. Mater. Chem., 6, 773 (1996).
12. F. Levy, "Intercalated Layered Materials," (D. Reidel Publishing Company, London), 1979.
13. R. Schollhorn, E. Sick, and A. Lerf, Mat. Res. Bull., 10, 1005 (1975).
14. R. Scholhorn and H. Meyer, Mat. Res. Bull., 9, 1237 (1974).
15. J. B. Maclachlan, W. H. Kruesi, D. J. Fray, Journal of Materials Science, 27, 4223 (1992).
16. A. D. Goleskaya, V. Sologub, and S. S. Shalyt, Sov. Phys. Semicond., 5, 416 (1971).
17. M. K. Zhitinskaya, V. I. Kaidanov, and V. P. Kondrt'ev, Sov. Phys. Semicond., 10, 1300 (1976).
18. I. A. Smirnov, E.V. Shadrichev, and V. A. Kutasov, Soviet Physic - Solid State, 11, 2681 (1970).
19. T. E. Svechnikova, M. A. Korzhuev, N. M. Maksimova, P. P. Konstantinov, and G. T. Alekseeva, Semiconductors, 30, 609 (1996).
20. C. Shafai and M. J. Brett, J. Vac. Sci. Technol. A, 15, 2798 (1997).
21. R. R. Shavangiradze, B. B. Anisimor, and Sh. Z. Dzhamagidze, Inorganic Materials, 33, 562 (1997).
22. I. D. Koz'mik, I.I. Grigorchak, Z.D. Kovalyak, B. P. Bakhmatyuk, S. V. Gavrilyuk, and M.V. Tovarnitskii, Russian Journal of Physical Chemistry, 64, 448 (1990).
23. Z.H. Dughaish, Physica B 322, 205 (2002)
24. Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Physica B 363, 196 (2002)
25. L. A. Kuznetsova, V. L. Kuznetsov, D. M. Rowe, J. Phys. and Chem. of Solids, 61, 1269(2000).
26. O.G. Karpinsky, L. E. Shelimova, M. A. Kretova, J. -P. Fleurial, Journal of Alloys and Compound, 268, 112 (1998).
27. P. Villars, A. Prince, and H. Okamoto, “Handbook of ternary alloy phase diagrams”, 6382 (1994)
28. 李雅明,固態電子學,全華科技圖書公司 (1995)
29. C.Kittel,Introduction to Solid State Physics,8th Edition,Wiley.
30. H. Scherrer and S. Scherrer, Bismuth telluride, antimony telluride, and their solid solutions. In: D.M. Rowe, Editor, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton (1995).
31. M. Takashiri, T. Shirakawa, K. Miyazaki and H. Tsukamoto, Sens. Actuator A 138 (2007), pp. 329–334.
32. O. Yamashita, Applied Energy 86 (2009) pp.1746–1756.
33. N. Peranio, O. Eibl and J. Nurnus, J. Appl. Phys. 100 (2006), p. 114306.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊