跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王煒銘
研究生(外文):Wei-Ming Wang
論文名稱:以FPGA為基礎之強健性放射狀基底函數網路控制永磁線型同步馬達伺服驅動系統
論文名稱(外文):FPGA-Based Robust RBFN Control for Permanent Magnet Linear Synchronous Motor Servo Drive System
指導教授:林法正林法正引用關係謝耀慶
指導教授(外文):Faa-Jeng LinYao-Ching Hsieh
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:151
中文關鍵詞:互補式滑動模態控制函數連結放射狀基底函數網路FPGA永磁線型同步馬達
外文關鍵詞:Complementary Sliding Mode ControlFunctional LinkRadial Basis Function NetworkFPGAPermanent Magnet Linear Synchronous Motor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:153
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的目的是發展以現場可程式邏輯閘陣列(Field Programmable Gate Array, FPGA)為基礎之強健性放射狀基底函數網路控制永磁線型同步馬達驅動系統,以達到強健性精密定位控制之目的。首先推導出磁場導向永磁線型同步馬達的動態模型,並利用FPGA發展模組、D/A轉換器、三角波比較電流控制之驅動電路及IGBT功率模組,完成以FPGA控制之永磁線型同步馬達驅動系統。為了使永磁線型同步馬達控制系統能在參數變化、外來干擾與摩擦力的影響下具備強健之控制性能,本論文提出具線上學習功能之放射狀基底函數網路控制器、函數連結放射狀基底函數網路控制器、以及放射狀基底函數網路為估測器之互補式滑動模態控制器,分別控制永磁線型同步馬達移動平台以追隨命令軌跡。最後由模擬與實作結果加以驗證智慧型控制架構其有效性與可行性。
The purpose of this thesis is to develop a field programmable gate array (FPGA)-based robust radial basis function network (RBFN) control for permanent magnet linear synchronous motor (PMLSM) drive system to achieve precision position control with robustness. First, the dynamic model of a field-oriented PMLSM drive is derived. Next, an FPGA-based PMLSM drive system, which consists of FPGA development board, D/A converters, a ramp comparison current-controlled PWM, and IGBT inverter, is implemented. However, the control accuracy of the PMLSM drive is much influenced by the existence of uncertainties, which usually comprise parameter variations, external disturbances and friction force. Therefore, three intelligent control systems, the radial basis function network control system, the functional link radial basis function network control system and the complementary sliding mode control system with radial basis function network estimator, are proposed with on-line learning capability and robust control characteristics to achieve precision position control for the PMLSM. Finally, the effectiveness of the proposed control schemes is demonstrated by some simulated and experimental results.
第一章 緒論1
1.1 研究動機與目的1
1.2 文獻回顧 2
1.3 論文大綱 5
第二章 永磁線型同步馬達驅動系統7
2.1 永磁線型同步馬達7
2.1.1 永磁線型同步馬達基本介紹7
2.1.2 永磁線型同步馬達結構介紹10
2.2 永磁線型同步馬達之驅動系統12
2.2.1 電流感測電路12
2.2.2 三角波比較電流控制電路14
2.2.3 IGBT互鎖與觸發電路17
2.2.4 IGBT模組20
2.2.5 過電流保護電路21
2.2.6 完整驅動控制電路圖 23
2.3 馬達編碼器介面電路 23
2.4 D/A介面電路23
2.5 永磁線型同步馬達控制與驅動系統之實體圖27
第三章 FPGA為基礎之永磁線型同步馬達控制晶片31
3.1 簡介31
3.2 FPGA內部結構33
3.2.1 可程式邏輯單元36
3.2.2 選擇式隨機存取記憶體單元37
3.2.3 乘法器單元38
3.2.4 時脈管理單元39
3.2.5 繞線資源單元40
3.3 永磁線型同步馬達之磁場導向控制40
3.4 FPGA控制晶片其設計架構43
3.4.1 時序控制45
3.4.2 位置與速度編碼器45
3.4.3 動子磁通位置之角度46
3.4.4 命令產生器48
3.4.5 磁場導向控制模組50
3.4.6 資料與D/A控制器52
3.4.7 控制器模組56
3.5 數值系統56
第四章 以FPGA為基礎之放射狀基底函數網路控制器59
4.1 簡介59
4.2 放射狀基底函數網路控制器59
4.2.1 放射狀基底函數網路之描述59
4.2.2 線上學習法則63
4.3 放射狀基底函數網路控制器之實現64
4.4 性能量測65
4.5 模擬結果71
4.6 實作結果76
第五章 以FPGA為基礎之函數連結放射狀基底函數網路控制器 83
5.1 簡介83
5.2 函數連結放射狀基底函數網路控制器83
5.2.1 函數連結類神經網路之描述83
5.2.2 函數連結放射狀基底函數網路之描述85
5.2.3 線上學習法則89
5.3 函數連結放射狀基底函數網路控制器之實現91
5.4 模擬結果100
5.5 實作結果105
第六章 以FPGA設計利用放射狀基底函數網路為估側器之互補式滑動模態控制器111
6.1 簡介111
6.2 以放射狀基底函數網路為估側器之互補式滑動模態控制器 111
6.2.1 互補式滑動模態控制器(CSMC)112
6.2.2 放射狀基底函數網路(RBFN)估側器115
6.2.3 利用放射狀基底函數網路為估側器之互補式滑動模態控制器系統119
6.3 以放射狀基底函數網路為估側器之互補式滑動模態控制器之實現122
6.4 模擬結果130
6.5 實作結果135
第七章 結論與未來研究方向 141
7.1 結論141
7.2 未來研究方向144
[1]I. Boldea and S. A. Nasar, Linear Electric Actuators and Generators. London, U.K.: Cambridge Univ. Press, 1997.
[2]C. J. Kempf and S. Kobayashi, “Disturbance observer and feedforward design for a high-speed direct-drive positioning table,” IEEE Trans. Contr. Syst. Tech., vol. 7, no. 5, pp. 513-526, 1999.
[3]F. J. Lin, C. H. Lin, and C. M. Hong, “Robust control of linear synchronous servo drive using disturbance observer and recurrent neural network compensator,” IEE Proc. Electric Power Appl., vol. 147, no. 4, pp. 263-272, 2000.
[4]K. K. Tan, T. H. Lee, H. F. Dou, S. J. Chin, and S. Zhao, “Precision motion control with disturbance observer for pulsewidth-modulated-driven permanent-magnet linear motors,” IEEE Trans. Magnetics, vol. 39, no. 3, pp. 1813-1818, 2003.
[5]T. H. Liu, Y. C. Lee, and Y. H. Chang, “Adaptive controller design for a linear motor control system,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 2, pp. 601-616, 2004.
[6]K. K. Tan, S. Zhao, and S. Huang, “Iterative reference adjustment for high-precision and repetitive motion control applications,” IEEE Trans. Contr. Syst. Tech., vol. 13, no. 1, pp. 85-97, 2005.
[7]F. J. Lin, P. H. Shen, and Y. S. Kung, “Adaptive wavelet neural network control for linear synchronous motor servo drive,” IEEE Trans. Magnetics, vol. 41, no. 12, pp. 4401-4412, 2005.
[8]S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and application to friction compensation,” in IEEE CDC Conf. Rec., pp. 4159-4164, 1997.
[9]A. P. Maulana, H. Ohmori, and A. Sano, “Friction compensation strategy via smooth adaptive dynamic surface control,” in IEEE CCA Conf. Rec., pp. 1090-1095, 1999.
[10]H. S. Ahn, Y. Q. Chen, and H. F. Dou, “State-periodic adaptive compensation of cogging and coulomb friction in permanent magnet linear motors,” IEEE Trans. Magnetics, vol. 41, no. 1, pp. 90-98, 2005.
[11]J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. New Jersey: Prentice-Hall, Upper Saddle River, 1997.
[12]J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Trans. Neural Networks, vol. 4, no. 1, pp. 156-159, 1993.
[13]S. Seshagiri and H. K. Khail, “Output feedback control of nonlinear systems using RBF neural networks,” IEEE Trans. Neural Networks, vol. 11, no. 1, pp. 69-79, 2000.
[14]M. J. Lee and Y. K. Choi, “An adaptive neurocontroller using RBFN for robot manipulators,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 711-717, 2004.
[15]J. C. Patra and R. N. Pal, “A functional link artificial neural network for adaptive channel equalization,” Signal Processing, vol. 43, pp. 181-195, 1995.
[16]J. C. Patra and A. C. Kot, “Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks,” IEEE Trans. Syst., Man, and Cybernetics-Part B, vol. 32, no. 4, pp. 505-511, 2002.
[17]K. A. Toh and W. Y. Yau, “Fingerprint and speaker verification decisions fusion using a functional link network,” IEEE Trans. Syst., Man, and Cybernetics-Part C, vol. 35, no. 3, pp. 357-370, 2005.
[18]C. H. Chen, C. T. Lin, and C. J. Lin, “A functional-link-based fuzzy neural network for temperature control,” in Proc. IEEE Foundations of Computational Intelligence Conf., pp. 53-58, 2007.
[19]朱珩,利用改良型粒子尋優法之類神經網路控制永磁線型同步馬達伺服驅動系統,碩士論文,國立東華大學電機工程研究所,2008年。
[20]J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, NJ, 1991.
[21]V. I. Utkin, “Sliding-mode control design principles and applications to electric drives,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, 1993.
[22]C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 449-507, 2005.
[23]H. M. Chen, J. P. Su, and J. C. Renn, “A novel sliding mode control of an electrohydraulic position servo system,” IEICE Trans. Fundamentals, vol. E85-A, no. 8, pp. 1928-1936, 2002.
[24]J. P. Su and C. C. Wang, “Complementary sliding control of non-linear system,” Int. J. Control, vol. 75, no. 5, pp. 360-368, 2002.
[25]J. Chen, and P. C. Tang, “A sliding mode current control scheme for PWM brushless DC motor drives”, IEEE Trans. Power Electron.,vol. 14, no. 3, pp. 541-551, 1999.
[26]R. X. Chen, L. G. Chen, and L. Chen, “System design consideration for digital wheelchair controller”, IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 898-907, 2000.
[27]D. Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA system”, IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 703-715, 2000.
[28]R. R. Ramos, D. Biel, E. Fossas, and F. Guinjoan, “A fixed-frequency quasi-sliding control algorithm: application to power inverters design by means of FPGA implementation”, IEEE Trans. Power Electron., vol. 18, no. 1, pp. 344-355,2003.
[29]C. F. Juang, and J. S. Chen, “Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation”, IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 941-949, 2006.
[30]S. Sanchez-Solano, A. J. Cabrera, I. Baturone, F. J. Moreno-Velo, and M. Brox, “FPGA implementation of embedded fuzzy controllers for robotic applications”, IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1937-1945, 2007.
[31]T. S. Li, S. J. Chang, and Y. X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot”, IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 867-880, 2003.
[32]F. J. Lin, D. H. Wang, and P. K. Huang, “FPGA-based fuzzy sliding-mode control for a linear induction motor drive”, IEE Proc. Electric Power Appl., vol. 152, no. 5, pp. 1137-1148, 2005.
[33]D. Zhang, H. Li, and E. G. Collins, “Digital anti-windup PI controllers for variable-speed motor drives using FPGA and stochastic theory”, IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1496-1501, 2006.
[34]H. Li, D. Zhang, and S.Y. Foo, “A stochastic digital implementation of a neural network controller for small wind turbine systems”, IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1502-1507, 2006.
[35]S. Jung, and S. S. Kim, “Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems”, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 265-271, 2007.
[36]D. Zhang, and H. Li, “A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms”, IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 551-561, 2008.
[37]楊松霖,利用自構式模糊類神經網路控制永磁線型同步馬達伺服驅動系統,碩士論文,國立東華大學電機工程研究所,2006年。
[38]P. Vas, Vector Control of AC Machines. New York: Oxford University Press, 1990.
[39]W. Leonhard, Control of Electrical Drive. Berlin: Springer- Verlag, 1996.
[40]陳政言,以FPGA為基礎之強健性放射狀基底函數控制線型感應馬達驅動系統,碩士論文,國立東華大學電機工程研究所,2007年。
[41]黃柏凱,以基因演算法為基礎之遞迴式模糊類神經網路控制線型感馬達驅動系統,碩士論文,私立中原大學電機工程研究所,2003年。
[42]林法正與魏榮宗,電機控制,滄海書局股份有限公司,2002。
[43]張智凱,以FPGA為基礎之適應性步階迴歸控制線型感馬達驅動系統,碩士論文,國立東華大學電機工程研究所,2006年。
[44]唐佩忠,VHDL與數位邏輯設計,高立圖書有限公司,1999。
[45]Data Sheet, Virtex-II Platform FPGAs. Xilinx Inc., 2005.
[46]劉昌煥,交流電機控制,東華書局股份有限公司,2001。
[47]Data Sheet, Dual 12-Bit DACPORT-AD7237. Analog Device, America.
[48]龔應時,陳建武,徐永松,TMS320F/C24x DSP控制器原理與應用,滄海書局股份有限公司,2001。
[49]F. J. Lin, L. T. Teng, C. Y. Chen, and C. K. Chang, “Robust RBFN control for linear induction motor drive using FPGA,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2170-2180, 2008.
[50]F. J. Lin, R. J. Wai, and C. C. Lee, “Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter”, IEE Proceedings Control Theory Appl., vol. 146, no. l, pp. 99-107, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊