跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林秀珍
研究生(外文):Lin Hsiu-Chen
論文名稱:果蠅基因擴增過程中Cul4及DDB1蛋白對DNA複製的調控
論文名稱(外文):Cul4 and DDB1 function on DNA replication during gene amplification in Drosophila follicle cells
指導教授:簡正鼎簡正鼎引用關係
指導教授(外文):Cheng-Ting Chien
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:66
中文關鍵詞:DNA複製泛素接合酉每基因增生
外文關鍵詞:DNA replicationubiquitin ligasegene amplification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
在真核細胞中,DNA複製起始的詳細機制仍不明確,特別是複製起始是否具有特定的位置與如何決定了解不多,目前被認為染色體構造與轉錄活性有關。果蠅的卵泡細胞的蛋殼蛋白基因增生,是個具有多重細胞複製起始的過程,而可以用於研究複製起始的生物模式,目前已知道染色體構造與轉錄因子皆可以調控此複製起始的活性與專一性,但詳細機制仍不明確。泛素黏合酵素Cul4與DDB1可以調控複製所需的蛋白Cdt1的降解,另外在染色體上也有許多重要的功能。在本論文我們以卵泡細胞的蛋殼蛋白基因增生作為題材,探討Cul4是否參與此系統中Cdt1蛋白降解的調控,以及是否參與複製起始的其他步驟。此系統中,果蠅的Cdt1蛋白會聚集在這些正在複製的基因上,而我們發現在大部分的Cul4突變細胞中,Cdt1蛋白卻會有累積在細胞核內的現象,然而,DDB1突變細胞卻只有部分會如此。進一步分析Cul4與DDB1突變細胞中,都觀察到蛋殼蛋白基因增生發生缺失及不正常基因複製的現象,以及複製起始的Orc2蛋白也無法坐落於蛋殼蛋白基因起始的位置。為了找出Cul4的角色,我們找到Cul4可以在細胞內外與另外一個起始蛋白MCM2-7結合,我們利用基因的交互作用進行實驗發現Cul4與MCM2-7是協同作用的;然而,Cul4卻可以藉由負調節E2F1的功能來使在蛋殼蛋白基因增生的複製起始能正常進行。
In high eukaryotes, the mechanism of DNA replication initiation remains unclear, and evidences indicate that the chromatin structure and transcription activity are important. Chorion gene amplification of Drosophila follicle cells is a good model system to address how the initiation starts. It has been shown that transcriptional factors (E2F/RB and the Myb complex) and chromatin regulate origin activity in chorion loci, but the detail mechanisms are still unclear. The Cul4-DDB1- based ubiquitin ligase is known to regulate the replication licensing factor Cdt1 level and also execute multiple functions on chromatin. In this study, I investigated if Cul4 participates in Cdt1 degradation and the process of replication initiation during gene amplification. During the initiation of chorion gene amplification, Double-parked (Dup), the Drosophila ortholog of Cdt1, is restricted to chorion gene foci. I found that Dup accumulated in nuclei in Cul4 mutant follicle cells, and the accumulation was less prominent in DDB1 mutant cells. Loss of Cul4 or DDB1 activity in follicle cells also compromised chorion gene amplification and induced ectopic genomic DNA replication. The focal localization of Orc2, a subunit of the origin recognition complex, is frequently absent in Cul4 mutant follicle cells. Furthermore, double-labeling BrdU and Orc2 showed that two replication phenotypes (inappropriate genomic DNA replication and origin firing ceased, respectively) in Cul4 mutant cells could exist at the same time. To reveal how Cul4 functions, I identified Cul4 complexes with another licensing factor MCM2-7 in vivo and in vitro, and the genetic interaction suggests that Cul4 and MCM2-7 function together. Interestingly, reducing E2F1 genomic dose suppresses the Cul4 mutant phenotype suggesting that Cul4 negatively regulated E2F1 activity for initiation process. Taken together, our results indicate that the Cul4-DDB1 based ubiquitin ligase functions in DNA replication initiation during gene amplification.
中文摘要 III
ABSTRACT IV
INTRODUCTION 1
DNA REPLICATION INITIATION 1
DROSOPHILA GENE AMPLIFICATION IN FOLLICLE CELLS 1
CUL4-DDB1 UBIQUITIN LIGASE FUNCTIONS ON CHROMATIN 3
CUL4 MEDIATES CDT1 DEGRADATION 6
MATERIALS AND METHODS 9
FLY STOCKS AND GENETICS 9
IMMUNOLABELING AND MICROSCOPY 10
BRDU INCORPORATION ASSAYS 10
Q-PCR OF CHORION GENES AND BRDU INCORPORATION IN HEAT SHOCK INDUCED CUL4 KR FLIES 11
RESULTS 13
GENERATION OF CUL4 MUTANTS 13
DUP ACCUMULATED DIFFERENTIALLY IN CUL4-DDB1 MUTANTS 14
CUL4-DDB1 MUTANT CELLS EXHIBIT DISTINCT REPLICATION PHENOTYPES 16
LOCALIZATION OF ORC2 IS DIFFERENTIALLY ALTERED IN CUL4-DDB1 MUTANT 18
CUL4 COMPLEXES WITH MCM IN VIVO AND IN VITRO 19
THE GENETIC INTERACTIONS OF CUL4 DURING GENE AMPLIFICATION 20
CUL4 IS REQUIRED FOR PROLIFERATION DURING DEVELOPMENT 21
CYCE IS ACCUMULATED IN CUL4 MUTANT IMAGINAL DISC CELLS 22
DISCUSSION 24
ABNORMAL DUP ACCUMULATION IN CUL4 MUTANT CELLS IN DNA REPLICATION 24
INVOLVEMENT OF CUL4 AND DDB1 IN CHORION GENE AMPLIFICATION 25
ROLE CUL4 IN CONTROLLING ORC2 PROTEIN LOCALIZATION 27
REFERENCE 29
Aggarwal, B. D. and Calvi, B. R. (2004). Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372-6.
Aggarwal, P., Lessie, M. D., Lin, D. I., Pontano, L., Gladden, A. B., Nuskey, B., Goradia, A., Wasik, M. A., Klein-Szanto, A. J., Rustgi, A. K. et al. (2007). Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev 21, 2908-22.
Arias, E. E. and Walter, J. C. (2005). Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev 19, 114-26.
Arias, E. E. and Walter, J. C. (2006). PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8, 84-90.
Arias, E. E. and Walter, J. C. (2007). Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21, 497-518.
Baker, N. E. and Rubin, G. M. (1992). Ellipse mutations in the Drosophila homologue of the EGF receptor affect pattern formation, cell division, and cell death in eye imaginal discs. Dev Biol 150, 381-96.
Beall, E. L., Bell, M., Georlette, D. and Botchan, M. R. (2004). Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev 18, 1667-80.
Beall, E. L., Manak, J. R., Zhou, S., Bell, M., Lipsick, J. S. and Botchan, M. R. (2002). Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420, 833-7.
Blow, J. J. and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6, 476-86.
Bosco, G., Du, W. and Orr-Weaver, T. L. (2001). DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol 3, 289-95.
Callus, B. A. and Vaux, D. L. (2007). Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14, 73-8.
Calvi, B. R., Lilly, M. A. and Spradling, A. C. (1998). Cell cycle control of chorion gene amplification. Genes Dev 12, 734-44.
Cayirlioglu, P., Bonnette, P. C., Dickson, M. R. and Duronio, R. J. (2001). Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development 128, 5085-98.
Cayirlioglu, P., Ward, W. O., Silver Key, S. C. and Duronio, R. J. (2003). Transcriptional repressor functions of Drosophila E2F1 and E2F2 cooperate to inhibit genomic DNA synthesis in ovarian follicle cells. Mol Cell Biol 23, 2123-34.
Chen, C. K. and Chien, C. T. (1999). Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors. Proc Natl Acad Sci U S A 96, 5055-60.
Chen, L. C., Manjeshwar, S., Lu, Y., Moore, D., Ljung, B. M., Kuo, W. L., Dairkee, S. H., Wernick, M., Collins, C. and Smith, H. S. (1998). The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res 58, 3677-83.
Chen, X., Zhang, Y., Douglas, L. and Zhou, P. (2001). UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem 276, 48175-82.
Claycomb, J. M., MacAlpine, D. M., Evans, J. G., Bell, S. P. and Orr-Weaver, T. L. (2002). Visualization of replication initiation and elongation in Drosophila. J Cell Biol 159, 225-36.
Claycomb, J. M. and Orr-Weaver, T. L. (2005). Developmental gene amplification: insights into DNA replication and gene expression. Trends Genet 21, 149-62.
Dai, Q. and Wang, H. (2006). "Cullin 4 makes its mark on chromatin". Cell Div 1, 14.
DePamphilis, M. L. (2003). The 'ORC cycle': a novel pathway for regulating eukaryotic DNA replication. Gene 310, 1-15.
Duda, D. M., Borg, L. A., Scott, D. C., Hunt, H. W., Hammel, M. and Schulman, B. A. (2008). Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995-1006.
Fujita, M. (2006). Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell Div 1, 22.
Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K. and Nakatani, Y. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357-67.
He, Y. J., McCall, C. M., Hu, J., Zeng, Y. and Xiong, Y. (2006). DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20, 2949-54.
Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. and Zhang, H. (2003). Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 5, 1008-15.
Higa, L. A., Yang, X., Zheng, J., Banks, D., Wu, M., Ghosh, P., Sun, H. and Zhang, H. (2006). Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle 5, 71-7.
Higa, L. A. and Zhang, H. (2007). Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div 2, 5.
Holmberg, C., Fleck, O., Hansen, H. A., Liu, C., Slaaby, R., Carr, A. M. and Nielsen, O. (2005). Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev 19, 853-62.
Hu, J., Zacharek, S., He, Y. J., Lee, H., Shumway, S., Duronio, R. J. and Xiong, Y. (2008). WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes Dev 22, 866-71.
Jason, L. J., Moore, S. C., Lewis, J. D., Lindsey, G. and Ausio, J. (2002). Histone ubiquitination: a tagging tail unfolds? Bioessays 24, 166-74.
Jia, S., Kobayashi, R. and Grewal, S. I. (2005). Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 7, 1007-13.
Jin, J., Arias, E. E., Chen, J., Harper, J. W. and Walter, J. C. (2006). A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23, 709-21.
Kapetanaki, M. G., Guerrero-Santoro, J., Bisi, D. C., Hsieh, C. L., Rapic-Otrin, V. and Levine, A. S. (2006). The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A 103, 2588-93.
Kim, Y. and Kipreos, E. T. (2007a). The Caenorhabditis elegans replication licensing factor CDT-1 is targeted for degradation by the CUL-4/DDB-1 complex. Mol Cell Biol 27, 1394-406.
Kim, Y. and Kipreos, E. T. (2007b). Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways. Cell Div 2, 18.
Landis, G., Kelley, R., Spradling, A. C. and Tower, J. (1997). The k43 gene, required for chorion gene amplification and diploid cell chromosome replication, encodes the Drosophila homolog of yeast origin recognition complex subunit 2. Proc Natl Acad Sci U S A 94, 3888-92.
Landis, G. and Tower, J. (1999). The Drosophila chiffon gene is required for chorion gene amplification, and is related to the yeast Dbf4 regulator of DNA replication and cell cycle. Development 126, 4281-93.
Lee, J. and Zhou, P. (2007). DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26, 775-80.
Lee, T. and Luo, L. (2001). Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24, 251-4.
Lee, T., Winter, C., Marticke, S. S., Lee, A. and Luo, L. (2000). Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25, 307-16.
Li, B., Ruiz, J. C. and Chun, K. T. (2002). CUL-4A is critical for early embryonic development. Mol Cell Biol 22, 4997-5005.
Li, J., Wang, Q. E., Zhu, Q., El-Mahdy, M. A., Wani, G., Praetorius-Ibba, M. and Wani, A. A. (2006). DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Res 66, 8590-7.
Lilly, M. A. and Spradling, A. C. (1996). The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev 10, 2514-26.
Liu, W., Nichols, A. F., Graham, J. A., Dualan, R., Abbas, A. and Linn, S. (2000). Nuclear transport of human DDB protein induced by ultraviolet light. J Biol Chem 275, 21429-34.
Lovejoy, C. A., Lock, K., Yenamandra, A. and Cortez, D. (2006). DDB1 maintains genome integrity through regulation of Cdt1. Mol Cell Biol 26, 7977-90.
Machida, Y. J., Hamlin, J. L. and Dutta, A. (2005). Right place, right time, and only once: replication initiation in metazoans. Cell 123, 13-24.
May, N. R., Thomer, M., Murnen, K. F. and Calvi, B. R. (2005). Levels of the origin-binding protein Double parked and its inhibitor Geminin increase in response to replication stress. J Cell Sci 118, 4207-17.
Nishitani, H., Sugimoto, N., Roukos, V., Nakanishi, Y., Saijo, M., Obuse, C., Tsurimoto, T., Nakayama, K. I., Nakayama, K., Fujita, M. et al. (2006). Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. Embo J 25, 1126-36.
O'Connell, B. C. and Harper, J. W. (2007). Ubiquitin proteasome system (UPS): what can chromatin do for you? Curr Opin Cell Biol 19, 206-14.
Otrin, V. R., McLenigan, M., Takao, M., Levine, A. S. and Protic, M. (1997). Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light. J Cell Sci 110 ( Pt 10), 1159-68.
Ou, C. Y., Lin, Y. F., Chen, Y. J. and Chien, C. T. (2002). Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev 16, 2403-14.
Peterson, C. L. and Laniel, M. A. (2004). Histones and histone modifications. Curr Biol 14, R546-51.
Prober, D. A. and Edgar, B. A. (2000). Ras1 promotes cellular growth in the Drosophila wing. Cell 100, 435-46.
Richardson, H., O'Keefe, L. V., Marty, T. and Saint, R. (1995). Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 121, 3371-9.
Royzman, I., Austin, R. J., Bosco, G., Bell, S. P. and Orr-Weaver, T. L. (1999). ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev 13, 827-40.
Saha, A. and Deshaies, R. J. (2008). Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 32, 21-31.
Schwed, G., May, N., Pechersky, Y. and Calvi, B. R. (2002). Drosophila minichromosome maintenance 6 is required for chorion gene amplification and genomic replication. Mol Biol Cell 13, 607-20.
Senga, T., Sivaprasad, U., Zhu, W., Park, J. H., Arias, E. E., Walter, J. C. and Dutta, A. (2006). PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J Biol Chem 281, 6246-52.
Shibutani, S. T., de la Cruz, A. F., Tran, V., Turbyfill, W. J., 3rd, Reis, T., Edgar, B. A. and Duronio, R. J. (2008). Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev Cell 15, 890-900.
Shimanouchi, K., Takata, K., Yamaguchi, M., Murakami, S., Ishikawa, G., Takeuchi, R., Kanai, Y., Ruike, T., Nakamura, R., Abe, Y. et al. (2006). Drosophila damaged DNA binding protein 1 contributes to genome stability in somatic cells. J Biochem 139, 51-8.
Shiyanov, P., Nag, A. and Raychaudhuri, P. (1999). Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J Biol Chem 274, 35309-12.
Sun, J., Smith, L., Armento, A. and Deng, W. M. (2008). Regulation of the endocycle/gene amplification switch by Notch and ecdysone signaling. J Cell Biol 182, 885-96.
Thomer, M., May, N. R., Aggarwal, B. D., Kwok, G. and Calvi, B. R. (2004). Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development 131, 4807-18.
Tower, J. (2004). Developmental gene amplification and origin regulation. Annu Rev Genet 38, 273-304.
Treisman, J. E., Follette, P. J., O'Farrell, P. H. and Rubin, G. M. (1995). Cell proliferation and DNA replication defects in a Drosophila MCM2 mutant. Genes Dev 9, 1709-15.
Wang, H., Zhai, L., Xu, J., Joo, H. Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y. and Zhang, Y. (2006). Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22, 383-94.
Whittaker, A. J., Royzman, I. and Orr-Weaver, T. L. (2000). Drosophila double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev 14, 1765-76.
Wohlschlegel, J. A., Dwyer, B. T., Dhar, S. K., Cvetic, C., Walter, J. C. and Dutta, A. (2000). Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309-12.
Yasui, K., Arii, S., Zhao, C., Imoto, I., Ueda, M., Nagai, H., Emi, M. and Inazawa, J. (2002). TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35, 1476-84.
Zhang, H. and Tower, J. (2004). Sequence requirements for function of the Drosophila chorion gene locus ACE3 replicator and ori-beta origin elements. Development 131, 2089-99.
Zhong, W., Feng, H., Santiago, F. E. and Kipreos, E. T. (2003). CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423, 885-9.
Zhou, Q., Krebs, J. F., Snipas, S. J., Price, A., Alnemri, E. S., Tomaselli, K. J. and Salvesen, G. S. (1998). Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37, 10757-65.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊