跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/26 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊智盛
研究生(外文):Chih-Sheng YangChih-Sheng YangChih-Sheng YangCh
論文名稱:發光二極體光照射對大鼠脛骨骨缺損癒合的影響
論文名稱(外文):Effects of LED Light Irradiation on Rat Tibial Defects Healing
指導教授:林清亮林清亮引用關係史 中
指導教授(外文):Chin-Liang LinChung Shih
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物及解剖學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:63
中文關鍵詞:發光二極體光照射
外文關鍵詞:light-emitting diodeLED
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
骨折的發生在日常生活上非常常見,醫學定義上當骨出現斷裂痕跡就稱為骨折。當骨折發生時會造成社會成本的增加,使患者無法工作,文獻也表示受傷的骨組織代謝可能受到低能量雷射照射而改變,而雷射又有許多不安全性的存在,所以本實驗主要目的是要使用高能激發的發光二極體對大鼠脛骨骨缺損癒合的影響,本實驗第一件事想了解發光二極體光照射對骨缺損癒合的影響,本實驗第二件事想證明發光二極體對骨生理代謝的變化。利用50隻13週大的SD雄性大白鼠,分成2大組3 week (3W)和6 week (6W)組別,每大組再細分4小組,分別為sham-operated control (SC),defect control (DC),sham-operated irradiated (SI),defect-irradiated (DI),和baseline, DC和DI組別會在脛骨近側端鑽洞,連續照射發光二極體3週和6週,照射組將發光二極體照射在大鼠脛骨部位,對照組則用鋁箔包住光源,每天照射一次,每次五分鐘,犧牲前一天和前八天會以腹腔注射骨螢光標示劑(calcein),動物犧牲後取下脛骨做骨組織形態學測量。
6W組別經過照射後礦物化沉積速率、骨形成速率有明顯的上升但是類骨質所佔比例無顯著性差異,但是有上升趨勢,發光二極體可能會影響類骨質的沉積。在照射6週後發現DI6W組的織狀骨的比例明顯比DC6W組低,在癒合後期發光二極體光照射可能會增加骨的重塑。此外,經過3週和6週的光照射下,生長板的厚度和縱向生長速率明顯增加,發光二極體光照射下可以刺激軟骨細胞的活性。
結論,發光二極體可刺激骨組織受傷之後的癒合,造骨細胞的活性增加,骨重塑的速度加快,刺激軟骨細胞活性的增加。
Bone fractures occur commonly in daily life, which is a medical condition in which a bone is cracked or broken, and some studies prove that the metabolism of injured bone tissue could be affected with several of low-level laser treatments (LLLT). This study is to determine the experimental-induced bone defect healing with light emitter diodes (LED). The first purpose of this study is to investigate the effects of LED irradiation on bone fracture healing. The second purpose of it is to study series bone metabolism changes while applying LED light irradiation on the rats. Male SD rats of 13 weeks old were used and divided into 2 major groups. Each major group subdivides into four subgroups: sham- operated control (SC), defect control (DC), sham-operated irradiated (SI), defect-irradiated (DI), and baseline. DC and DI underwent surgery to burr on rat tibia, and produced a bone defects. The rats of first subgroup were irradiated with LED light (630nm) the next day after surgery, and were sacrificed 3 week later (3W). The rats of second group were irradiated with LED light the next day after surgery and were sacrificed 6 week later (6W). On 8th and 1st day before sacrificed, all rats were administered bone markers determination by intraperitoneal injection (IP). Tibia of rats collected after sacrificed were determined on growth conditions, and bone histomorphometry.
Rats of LED light irradiation group had higher value on mineral apposition rate (MAR) and bone formation rate (BFR). It implied that LED irradiation could stimulate the activation of osteoblasts. LED light irradiation also can accelerate bone healing on 3W groups and expressed as higher bone defect filling percentage. On the 6W groups, the woven bone percentage of DI6W group was lower than that of DC6W group, it implied that LED irradiation could accelerate bone remolding process and lamella bone deposition. According to the measurement of longitudinal growth rate and growth plate thickness, LED irradiation may enhance chondrocyte activities.
LED irradiation can promote bone defect healing. The mechanism might be via LED irradiation induced enhancement of bone remolding process, osteoblast and chondrocyte activities.
目錄
目錄 I
圖表目錄 III
附錄目錄 IV
中文摘要 V
英文摘要 VII
第一章 緒言 1
第一節 骨構造 1
壹、骨組織之構造 1
貳、骨的發育 2
参、骨重塑造作用 (bone remodeling) 4
肆、骨折癒合的過程 (bone fracture healing process) 6
伍、物理性因素對骨折癒合的影響 8
第二節 組織接受光照射後的效應 9
壹、初級作用 9
貳、次級作用 10
第三節 雷射應用在骨組織 12
壹、低能量雷射在細胞外 (in vitro)實驗 12
貳、低能量雷射應用在骨折癒合的動物模式 13
第四節 發光二極體 (light-emitting diode,LED) 15
第五節 發光二極體之應用 17
第六節 研究目的 19
第二章 材料與方法 20
第一節 實驗材料 20
壹、實驗動物 20
貳、發光二極體 (light-emitting diode,LED) 20
第二節 實驗設計與方法 21
壹、實驗設計 21
貳、動物手術 22
參、實驗方法 23
第三章 結果 29
第四章 討論 33
第五章 結論 37
第七章 參考文獻 51
圖附錄 56

圖表目錄

圖1、給予LED光照射後脛骨生長板厚度測量統計圖………………………38
圖2、給予LED光照射後脛骨縱向生長速率統計圖…………………………39
圖3、給予LED光照射後皮質骨內空腔所佔皮質骨的百分比統計圖………40
圖4、織狀骨 (woven bone)在皮質骨所佔比例統計圖………………………41
圖5、皮質骨癒合百分比例統計圖 (Bone defect filling ratio)......42
圖6、皮質骨內骨中細胞 (osteocyte)的數量統計圖…………………………43
圖7、皮質骨內骨中細胞凹陷面積密度 (osteocyte lacunae density)百分比統計圖…………………………………………………………………………… 44
圖8、皮質骨中類骨質 (osteoid)所佔比例統計圖……………………………45
圖9、皮質骨中單位面積溶蝕區域 (Erosion surface)所佔比例統計圖…… 46
圖10、兩條螢光帶 (Double labeling surface)所佔皮質骨百分比統計圖……47
圖11、單一螢光帶 (Single labeling surface)所佔皮質骨百分比統計圖……48
圖12、皮質骨礦物化沉積速率 (Mineral apposition rate)統計圖……………49
圖13、皮質骨之骨形成速率 (Bone formation rate)統計圖………………50

附錄1、光子作用的可能機制摘要圖 (Model summarizing the identified mechanisms of light action)……………………………………………………56
附錄2、滑走式硬組織切片機 (Jung-K heavy microtom)……………………57
附錄3、電動線鋸 (scroll saw)………………………………………………58
附錄4、石膏研磨機 (dental milling machine)………………………………59
附錄5、半自動影像分析系統 (semi-automatic image analysis system)..........60
附錄6、半自動骨組織形態學測量影像分析實際操作時螢幕顯示內容(osteomeasure 3.0版)..........................................................................................61
附錄7、皮質骨骨缺損組織切片………………………………………………62
附錄8、皮質骨骨缺損在環型偏光鏡 (circularly polarized light)視野影像....63
Aaron, R.K., Ciombor, D.M., and Simon, B.J. (2004). Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res, 21-29.

Abergel, R.P., Meeker, C.A., Lam, T.S., Dwyer, R.M., Lesavoy, M.A., and Uitto, J. (1984). Control of connective tissue metabolism by lasers: recent developments and future prospects. J Am Acad Dermatol 11, 1142-1150.

Adar, F., and Yonetani, T. (1978). Resonance Raman spectra of cytochrome oxidase. Evidence for photoreduction by laser photons in resonance with the Soret band. Biochim Biophys Acta 502, 80-86.

Aihara, N., Yamaguchi, M., and Kasai, K. (2006). Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci 21, 24-33.

Almeida-Lopes, L., Rigau, J., Zangaro, R.A., Guidugli-Neto, J., and Jaeger, M.M. (2001). Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29, 179-184.

Bonewald, L.F., and Mundy, G.R. (1990). Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res, 261-276.

Braverman, B., McCarthy, R.J., Ivankovich, A.D., Forde, D.E., Overfield, M., and Bapna, M.S. (1989). Effect of helium-neon and infrared laser irradiation on wound healing in rabbits. Lasers Surg Med 9, 50-58.

Bromage, T.G., Goldman, H.M., McFarlin, S.C., Warshaw, J., Boyde, A., and Riggs, C.M. (2003). Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec B New Anat 274, 157-168.

Butow, R.A., and Avadhani, N.G. (2004). Mitochondrial signaling: the retrograde response. Mol Cell 14, 1-15.

Conlan, M.J., Rapley, J.W., and Cobb, C.M. (1996). Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23, 492-496.

Danilov, V.P., Zakharov, S.D., Ivanov, A.V., Murina, T.M., Eremeev, B.V., Mashalov, A.A., Novikov, E.G., Panasenko, N.A., Perov, S.N., and Prokhorov, A.M. (1990). [Photodynamic cell injury in the red and IR-absorption bands of endogenous oxygen]. Dokl Akad Nauk SSSR 311, 1255-1258.

Desmet, K.D., Paz, D.A., Corry, J.J., Eells, J.T., Wong-Riley, M.T., Henry, M.M., Buchmann, E.V., Connelly, M.P., Dovi, J.V., Liang, H.L., et al. (2006). Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24, 121-128.

Dierickx, C.C., and Anderson, R.R. (2005). Visible light treatment of photoaging. Dermatol Ther 18, 191-208.

Gaber, S., Fischerauer, E.E., Frohlich, E., Janezic, G., Amerstorfer, F., and Weinberg, A.M. (2009). Chondrocyte apoptosis enhanced at the growth plate: a physeal response to a diaphyseal fracture. Cell Tissue Res 335, 539-549.

Garavello-Freitas, I., Baranauskas, V., Joazeiro, P.P., Padovani, C.R., Dal Pai-Silva, M., and da Cruz-Hofling, M.A. (2003). Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70, 81-89.

Hantes, M.E., Mavrodontidis, A.N., Zalavras, C.G., Karantanas, A.H., Karachalios, T., and Malizos, K.N. (2004). Low-intensity transosseous ultrasound accelerates osteotomy healing in a sheep fracture model. J Bone Joint Surg Am 86-A, 2275-2282.

Hernandez, C.J., Majeska, R.J., and Schaffler, M.B. (2004). Osteocyte density in woven bone. Bone 35, 1095-1099.

Karu, T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49, 1-17.

Karu, T.I. (2008). Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84, 1091-1099.

Karu, T.I., Tiphlova, O.A., Matveyets Yu, A., Yartsev, A.P., and Letokhov, V.S. (1991). Comparison of the effects of visible femtosecond laser pulses and continuous wave laser radiation of low average intensity on the clonogenicity of Escherichia coli. J Photochem Photobiol B 10, 339-344.

Khadra, M. (2005). The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies. Swed Dent J Suppl, 1-63.

Khullar, S.M., Emami, B., Westermark, A., and Haanaes, H.R. (1996). Effect of low-level laser treatment on neurosensory deficits subsequent to sagittal split ramus osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82, 132-138.

Liu, X., Lyon, R., Meier, H.T., Thometz, J., and Haworth, S.T. (2007). Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25, 487-494.

Matsumoto, M.A., Ferino, R.V., Monteleone, G.F., and Ribeiro, D.A. (2009). Low-level laser therapy modulates cyclo-oxygenase-2 expression during bone repair in rats. Lasers Med Sci 24, 195-201.

Mester, E., Mester, A.F., and Mester, A. (1985). The biomedical effects of laser application. Lasers Surg Med 5, 31-39.

Nicola, R.A., Jorgetti, V., Rigau, J., Pacheco, M.T., dos Reis, L.M., and Zangaro, R.A. (2003). Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18, 89-94.

Nohl, H., and Hegner, D. (1978). Evidence for the existence of catalase in the matrix space of rat-heart mitochondria. FEBS Lett 89, 126-130.

Novicoff, W.M., Manaswi, A., Hogan, M.V., Brubaker, S.M., Mihalko, W.M., and Saleh, K.J. (2008). Critical analysis of the evidence for current technologies in bone-healing and repair. J Bone Joint Surg Am 90 Suppl 1, 85-91.

Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., and Recker, R.R. (1987). Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2, 595-610.

Pinheiro, A.L., and Gerbi, M.E. (2006). Photoengineering of bone repair processes. Photomed Laser Surg 24, 169-178.

Pretel, H., Lizarelli, R.F., and Ramalho, L.T. (2007). Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39, 788-796.

Sato, Y., Arai, N., Negishi, A., and Ohya, K. (1997). Expression of cyclooxygenase genes and involvement of endogenous prostaglandin during osteogenesis in the rat tibial bone marrow cavity. J Med Dent Sci 44, 81-92.

Schindeler, A., McDonald, M.M., Bokko, P., and Little, D.G. (2008). Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol 19, 459-466.

Stein, A., Benayahu, D., Maltz, L., and Oron, U. (2005). Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23, 161-166.

Trelles, M.A., and Mayayo, E. (1987). Bone fracture consolidates faster with low-power laser. Lasers Surg Med 7, 36-45.

Tsiridis, E., Upadhyay, N., and Giannoudis, P. (2007). Molecular aspects of fracture healing: which are the important molecules? Injury 38 Suppl 1, S11-25.

Valchanou, V.D., and Michailov, P. (1991). High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 15, 181-184.

Whelan, H.T., Buchmann, E.V., Dhokalia, A., Kane, M.P., Whelan, N.T., Wong-Riley, M.T., Eells, J.T., Gould, L.J., Hammamieh, R., Das, R., et al. (2003). Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21, 67-74.

Whelan, H.T., Connelly, J.F., Hodgson, B.D., Barbeau, L., Post, A.C., Bullard, G., Buchmann, E.V., Kane, M., Whelan, N.T., Warwick, A., et al. (2002). NASA light-emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg 20, 319-324.

Whelan, H.T., Smits, R.L., Jr., Buchman, E.V., Whelan, N.T., Turner, S.G., Margolis, D.A., Cevenini, V., Stinson, H., Ignatius, R., Martin, T., et al. (2001). Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19, 305-314.

Yamada, K. (1991). Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). Nippon Seikeigeka Gakkai Zasshi 65, 787-799.

Vinck E;Applicability of light emitting diode irradiation in physiotherapy, PhD thesis, for Ghent university, pp.12-14, 2005

Michael H 原著,王長君等編譯;Ross 組織學,第一版,合記圖書出版社,台北市,2006年

陳德請、吳世揚;光電元件,生物光電工程導論,初版,全華科技圖書股份有限公司,台北市,2003年。

許幼青;大鼠動物模式下給予發光二極體照射對骨代謝研究,國防醫學院生物及解剖學研究所碩士論文,2006年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊