跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊秀蘭
研究生(外文):YANG HSIU LAN
論文名稱:型II模糊集的模糊熵
論文名稱(外文):Entropy of Type-2 Fuzzy Sets
指導教授:洪文良洪文良引用關係
指導教授(外文):HUNG WEN LIANG
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:人資處數學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:25
中文關鍵詞:模糊集合型II模糊集合模糊熵模糊度不確定因素
外文關鍵詞:Fuzzy setsType-2 fuzzy setsEntropyFuzzinessUncertainty
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
型II模糊集合的模糊熵
摘要
型II模糊集合(Type-2 Fuzzy sets)改善了傳統的模糊集合(Type-1 Fuzzy sets)中的不確定因素(Uncertainty)與模糊度(Fuzziness)。在日常實務中,同樣一個物件,也會因為觀點不同,其模糊程度也不同。如何
決定其模糊程度呢?模糊度最普遍的量測就是模糊熵(entropy) ,有許多數學家在研究模糊熵,並對模糊熵提出不同的量測公式。

本論文以Mendel與 John(2001)所提出的新的模糊集合與定理為基礎,提出一個新的型II模糊集合的模糊熵量測公式。藉由一些例子來和其他量測公式做比較,結果發現: 我們的量測公式更具有彈性和實用性。
Entropy of Type-2 Fuzzy sets
Abstract
Type-2 fuzzy sets improve uncertainty and fuzziness of Type-1 fuzzy sets. In daily life, the degree of fuzziness is not the same because the same object would have different degrees of fuzziness due to different viewpoints. How the degree of fuzziness of type-2 fuzzy sets will be decided? The most common measurement of the degree of fuzziness is “entropy” and the definitions of “entropy” are widely varied.
This dissertation, based on Mendel and John’s theorem, developed a new measure for type-2 fuzzy sets. Some examples are also presented for comparisons of the newly developed measure with the existing measure. After finishing all the comparisons, we found that our method is more flexible and practical than the existing measure.
目次
摘要 I
ABSTRACT II
目次 III
表次 IV
圖次 VI
第一章緒論 1
第一節研究動機 1
第二節研究目的 2
第二章文獻探討 4
第一節模糊集合的模糊度 4
第二節型II模糊理論 7
第三章型II模糊集合之模糊熵 14
第一節模糊熵量測公式 14
第二節模糊熵的計算 18
第四章結論 23
參考文獻 24
一、中文部分 24
二、英文部分 24
參考文獻

一、中文部份
[1]王文俊(2005)。認識Fuzzy。全華。台北。
[2]林德成(2008)。在型II模糊集合上的量測。未出版之博士學位論文,中原大學應用數學研究所,桃園。
[3]陳亦融(2004)。第二代模糊推論處理器之設計與研究。未出版之碩士論文,中原大學電子工程研究所,桃園。
[4]區亦勤.張先迪(2002)。模糊數學原理及應用。儒林。台北。
[5]藎壚(2003)。實用模糊數學。凡異。新竹。

二、英文部份

[1]A. De Luca and S. Termini (1972), A definition of nonprobabilistic entropy in the setting of fuzzy sets theory, Information and Computation 20,301-312.
[2]A. Kaufmann (1975), Introduction to the Theory of Fuzzy sets, Academic Press, NY.
[3]D. Wu and J. M. Mendel(2007), Uncertainty measure for interval type-2 fuzzy sets, Information Science 177,5378-5393.
[4]E. Szmidt and J. Kacprzyk (2001), Entropy for intuitionistic fuzzy sets, Fuzzy Sets and System 118, 467-477.
[5]F. Criado and T. Gachcchiladze (1997),Entropy of fuzzy events, Fuzzy Sets and System 88,99-106.
[6]Jerry M. Mendel(2001), Uncertain Rule-Based Fuzzy Logic Systems:Introduction and New Direction, Prentice-Hall, Upper Saddle River, NJ.
[7]N. N. Karnik and J. M. Mendel (1999), Application of a type-2 fuzzy logic systems to forecasting of time series, Information Science 120, 89-111.
[8]N. N. Karnik and J. M.Mendel (2001), Operation on atype-2 fuzzy sets, Information Science 122, 327-348.
[9]N. N. Karnik and J. M.Mendel (2001), Centroid of a type-2 fuzzy sets, Information Science 132, 195-220.
[10]P. Burillo and H. Bustice (1996), Entropy on intuitionistic fuzzy sets and interval-valued fuzzy sets, fuzzy Seta and System 78,305-316.
[11]R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz, O. Monyiel (2007),Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic, Information Science 177, 2023-2048.
[12]R. R. Yager (1979), A measurement-informational discussion of fuzzy union and fuzzy intersection, International Journal of Man-Machine Studies 11, 189-200.
[13]W. L. Hung and M. S. Yang(2004), Similarity measures between type-2 fuzzy sets, Int. J. of Uncertainty Fuzziness and knowledge-Based System, vol.12 ,827-841.
[14]W. Zeng and H. Li(2006),Relationship between similarity measure and entropy of interval valued fuzzy sets, Fuzzy Sets and System 157, 1477-1484.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top