跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃雅令
研究生(外文):Ya-ling Huang
論文名稱:遠紅外線照射對細胞激素TNF-α、IL-1β、IL-6及IL-8之調節
論文名稱(外文):Regulation of Cytokine TNF-α, IL-1β, IL-6 and IL-8 by Far Infrared Irradiation
指導教授:林群智林群智引用關係
指導教授(外文):Chun-chin Lin
學位類別:碩士
校院名稱:南華大學
系所名稱:自然醫學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:細胞激素巨噬細胞免疫遠紅外線幹細胞
外文關鍵詞:immunitymacrophagefar infrared radiationcytokinestem cell
相關次數:
  • 被引用被引用:2
  • 點閱點閱:577
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  本研究利用不同波長之遠紅外線材料所釋放出之遠紅外線對周邊血液單核細胞、骨髓幹細胞及大鼠照射不同時間,觀察遠紅外線對細胞激素TNF-α、IL-1β、IL-6及IL-8之調節。
 
  實驗中將遠紅外線材料之最大放射強度波長(放射峰值波長,λ max)設定為9.63 μm、9.11 μm、8.57 μm,照射15、30、45及60 min。在細胞試驗中利用MTT測定巨噬細胞的增生率,以TRAP測定染巨噬細胞之活性,且收集細胞培養液進行TNF-α及IL-1β之分析,並萃取周邊血液單核細胞之核醣核酸,分析IL-6及IL-8的基因表現量。此外,體外培養骨髓細胞,觀察基質細胞、脂肪細胞及造骨細胞之分化,以評估骨髓微環境之發育。在動物試驗中,λmax設定為9.63μm 及9.11 μm,每次照射45 min。照射模式分為兩種:(1)持續照射2週,並於照射後第3 、7及14天分析大鼠血清中TNF-α及IL-6之濃度;(2)單次照射,並於照射後之第2及第4小時分析大鼠血清中TNF-α及IL-6之濃度。
 
  結果顯示,遠紅外線可促進巨噬細胞之增生與發育,並增加IL-6、IL-8及TNF-α等細胞激素之分泌,且可增進骨髓微環境之的發育,進而促進造血幹細胞之分化。此外,大鼠經遠紅外線照射後第2及第4小時,其血清中IL-6之分泌增加,而在照射兩週後,其血清中IL-6及TNF-α之分泌均增加。由以上結果推論,遠紅外線可透過增加IL-6、IL-8及TNF-α等細胞激素之分泌、增進骨髓微環境之發育,以及提升造血幹細胞之分化,進而促進巨噬細胞之增生及發育,以調節生物體之免疫能力。
  This research utilized far infrared radiation (FIR) emitted by far infrared material (FIM) with different wavelength to irradiate peripheral blood monocytes, bone marrow stem cells and rats over different time spans for investigating the effect of FIR on immunoregulation.
 
  In the experiments, the wavelength of FIM was set as 9.63 μm, 9.11 μm or 8.57 μm, and the irradiation time was 15, 30 or 45 min. In cell tests, the proliferation rate of macrophages was determined by MTT assay, and the activity of macrophages was determined by TRAP staining. The cultured medium was collected for TNF-αand IL-1β analysis. RNA of the peripheral blood monocytes was extracted to analyze the gene expression of IL-6 and IL-8. Moreover, bone marrow cells were cultured in vivo to investigate the differentiation of stromal cells, lipocytes as well as osteoblasts and to evaluate the development of microenvironment in bone marrow. In animal experiments, theλmax was set as 9.63 μm or 9.11 μm, and the irradiation time was 45 min for every test. Two irradiation modes were utilized in the tests. The first is continuous irradiation for 2 weeks. Concentration of TNF-α and IL-1β in the serum of rats were determined respectively on the 3 rd, 7 th and 14 th day. The second is once irradiation, and the concentration of TNF-α and IL-1β in the serum was assayed at the 2 nd and 4 th hour after irradiation.
 
  The results indicate that FIR is able to enhance proliferation and development of macrophages and increase secretion of IL-6, IL-8 and TNF-α. Development of microenvironment in bone marrow can also be promoted after FIR irradiation, which can further stimulate differentiation of hematopoietic stem cells. Additionally, IL-6 in serum of the rats increased at the 2 nd and 4 th hour after FIR irradiation. The secretion of IL-6 and IL-8 in serum was also enhanced after 2 weeks of irradiation. Accordingly, FIR is suggested capable of promoting immunity of organisms by increasing secretion of cytokines (IL-6, IL-8 and TNF-α), enhancing development of bone marrow microenvironment as well as the differentiation of hematopoietic stem cells. This can further promote development and differentiation of the macrophages and thus regulation immunity of organisms.
中文摘要 I
英文摘要 III
目次 V
表次 X
圖次 XI
  
第一章、前言 1
  
第二章、文獻回顧 3
2.1 遠紅外線 3
2.1.1 遠紅外線之物理特性 3
2.1.2 黑體輻射 7
2.1.3 遠紅外線之生物效應 8
2.1.4 遠紅外線之相關研究 11
2.2 免疫系統之介紹 14
2.2.1 非專一性免疫(Nonspecific immunity) 14
2.2.2專一性免疫(Specific immunity) 16
2.2.3 單核球與巨噬細胞(monocytes and Marcrophage) 19
2.2.4 顆粒性白血球(Granulocyte) 20
2.3 脂多醣(Lipopolysaccharides, LPS) 21
2.4 細胞激素(Cytokine) 22
2.4.1 細胞白介素(Interleukins, ILs) 22
2.4.2 腫瘤壞死因子(Tumor necrosis factors, TNFs) 24
2.5骨髓幹細胞 25
2.6骨髓微環境 25
2.7研究動機與研究目的 25
  
第三章 實驗材料與方法 27
3.1 實驗材料 27
3.1.1 實驗動物 (大鼠) 27
3.1.2 實驗人類單核球 27
3.1.3 遠紅外線照射儀器 27
3.2 實驗藥品及試劑 30
3.2.1 周邊單核球細胞之培養 30
3.2.2 骨髓幹細胞之培養 30
3.2.3 核醣核酸萃取及反轉錄聚合酶連鎖反應(RT-PCR) 30
3.2.4 細胞增生之測定(MTT assay) 31
3.2.5 細胞激素之測定(ELISA assay) 31
3.2.6 細胞染色染劑 31
3.3 實驗儀器及器材 32
3.4 實驗方法與步驟 33
3.4.1 研究架構 33
3.4.2 遠紅外線照射細胞處理 36
3.4.3 周邊血液單核細胞之分離 36
3.4.4 巨噬細胞增生率之測定 37
3.4.5 巨噬細胞活性染色 38
3.4.6 細胞激素之測定(ELISA assay) 38
3.4.7 反轉錄聚合酶連鎖反應(RT-PCR) 39
3.4.8 反轉錄聚合酶連鎖反應條件: 42
3.4.9 骨髓幹細胞收集 42
3.4.10 骨髓幹細胞之分組與處理 43
3.4.11 造骨細胞活性染色 43
3.4.12 大鼠之遠紅外線照射分組與處理 43
3.4.13 樣本收集 44
3.4.14 血清中介白質(IL-6)濃度測定 44
3.4.15 血清中介白質(TNF-α)濃度測定 45
3.5 統計分析 45
  
第四章 結果 46
4.1 不同遠紅外線之照射波長與時間及LPS對周邊血液單核球(PBMC)細胞增生率之影響 46
4.2 不同遠紅外線之照射波長與時間對巨噬細胞分化之影響 48
4.3 不同遠紅外線之照射波長與時間及LPS對周邊血液單核球(PBMC)之IL-8、IL-6 mRNA表現之影響 54
4.4 不同遠紅外線之照射波長與時間及LPS對周邊血液單核球(PBMC)細胞細胞激素分泌之影響 56
4.5 遠紅外線照射對骨髓幹細胞之微環境的影響 60
4.5.1 不同遠紅外線之照射波長與時間對基質細胞分化之影響 60
4.5.2 不同遠紅外線之照射波長與時間對脂肪細胞分化之影響 62
4.5.3 不同遠紅外線之照射溫度與時間對造骨細胞分化之影響 77
4.6 遠紅外線照射組對SD Rat動物體血清中介白質(IL-6)與腫瘤壞死因子 (TNF-α)分泌之濃度 80
4.7 遠紅外線照射組及LPS組對SD Rat動物體血清中介白質(IL-6)與腫瘤壞死因子 (TNF-α) 分泌之濃度 84
  
第五章 討論 87
  
第六章 結論 93
  
參考文獻 94
  
表次
表1 反轉錄聚合酶連鎖反應所用GAPDH、IL-8、IL-6之引子 (primer)的序列 40
表2 GAPDH、IL-8、IL-6進行PCR反應所需材料 41
  
圖次
圖2-1 紅外線在電磁波譜之範圍 5
圖2-2 遠紅外線之頻譜圖 6
圖2-3 紅外線細胞的吸收與細胞週期 10
圖3-1 遠紅外線照射細胞儀器 28
圖3-2 遠紅外線照射動物儀器 29
圖3-3 人體周邊血液單核細胞實驗架構圖 34
圖3-4 大鼠骨髓幹細胞實驗架構圖 35
圖4-1不同遠紅外線之照射波長與時間對巨噬細胞增生率統計圖 47
圖4-2不同遠紅外線之照射波長與時間對巨噬細胞發育統計圖 49
圖4-3控制組之巨噬細胞圖      50
圖4-4 9.63 μm之遠紅外線照射組之巨噬細胞圖   51
圖4-5 9.11 μm之遠紅外線照射組之巨噬細胞染色圖  52
圖 4-6 8.57 μm之遠紅外線照射组之巨噬細胞染色圖  53
圖4-7 IL-6與IL-8基因表現量圖 55
圖 4-8 不同遠紅外線之照射波長與時間及LPS對周邊血液單核細胞TNF-α之濃度 58
圖 4-9不同遠紅外線之照射波長與時間及LPS對周邊血液單核細胞之濃IL-1β度 59
圖 4-10 不同遠紅外線之照射波長與時間對基質細胞分化之統計圖
61
圖 4-11不同遠紅外線之照射波長與時間對脂肪細胞分化之統計圖
63
圖 4-12控制組之脂肪細胞圖 64
圖 4-13 9.63 μm -15 min之遠紅外線照射組之脂肪細胞圖 65
圖 4-14 9.63 μm -30 min之遠紅外線照射組之脂肪細胞圖 66
圖 4-15 9.63 μm -45 min之遠紅外線照射組之脂肪細胞圖 67
圖 4-16 9.63 μm -60 min之遠紅外線照射組之脂肪細胞圖 68
圖 4-17 9.11 μm -15 min之遠紅外線照射組之脂肪細胞圖 69
圖 4-18 9.11 μm -30 min之遠紅外線照射組之脂肪細胞圖 70
圖 4-19 9.11 μm -45 min之遠紅外線照射組之脂肪細胞圖 71
圖 4-20 9.11 μm -60 min之遠紅外線照射組之脂肪細胞圖 72
圖 4-21 8.57 μm -15 min之遠紅外線照射組之脂肪細胞圖 73
圖 4-22 8.57 μm -30 min之遠紅外線照射組之脂肪細胞圖 74
圖 4-23 8.57 μm -45 min之遠紅外線照射組之脂肪細胞圖 75
圖 4-24 8.57 μm -60 min之遠紅外線照射組之脂肪細胞圖 76
圖 4-25不同遠紅外線之照射波長與時間對造骨細胞分化之統計圖
78
圖 4-26 鹼性磷酸酶染色圖 79
圖 4-27遠紅外線照射組對SD Rat動物體血清中白介素 (IL-6)之濃度 82
圖 4-28遠紅外線照射組對SD Rat動物體血清中白介素 (TNF-α)之濃度 83
圖 4-29 遠紅外線照射組及LPS組對SD Rat動物體血清中白介素 (IL-6)之濃度 85
圖 4-30遠紅外線照射組及LPS組對SD Rat動物體血清中白介素 (TNF-α)之濃度 86
中文文獻
方士英、姚宏偉、李俊(2004)。冬蟲夏草抗炎免疫調節作用的研究進展。安徽醫科,8 (3),163-166。
 
王祥甫、鍾景光(1997)。圖解免疫學。台北市:合記圖書出版社。
 
王聖予、李麗俐、陳慧玲、馮潤蘭、楊志元、謝國珍(1996)。免疫學。台北市:藝軒圖書出版社。
 
吳本玠(2001)。遠紅外治療儀的動物實驗研究。中國醫療器械資訊,7(2)。
 
吳強、郭光燦(1996)。光學。北京:中國科學技術大學出版社。
 
林明泉(1993)。臨床血清免疫學。台北市:藝軒圖書出版社。
 
高逢時(2003)。黑夜的精靈-螢光體。頁科學發展月刊,367,64-69。
 
程紹鈞、王蕩、張廣運(2000)。紅外線輻射對糖尿病兔糖代謝調控的實驗性研究。中華物理醫學與康復雜誌,22(3),165-167。
 
黃文雄(1985)。熱傳學。台北:黃文雄中央圖書出版社。
 
黃柏銘、嚴正傑、李忠仁(2007)。針灸治療與紅外線照射對於2型糖尿病患者的臨床研究。台灣中醫臨床醫學雜誌,13 (2),128-133。
 
劉靜、紀樹荃、周琳麗、陳惠仁(2001)。化療對造血微環境的影響及化療後回輸自體骨髓基質細胞對造血功能恢復的作用。中華血液學雜誌,22(7),341-343。
 
謝鸚燁(2008)。遠紅外線對於人體超氧陰離子變異及自律神經系統活性之影響。出版之碩士論文,元培科技大學影像醫學研究所碩士論文,新竹。
 
英文文獻
Abdulla, D., Goralski, K. B., & Renton, K. W. (2006). The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat. Toxicol Appl Pharmacol, 216(1), 1-10.
 
Alban, S., & Gastpar, R. (2001). Development of SPC-ELISA: a new assay principle for the study of sulfated polysaccharide-protein interactions. J Biomol Screen, 6(6), 393-400.
 
Al Rayes, M. H., Rawstron, A. C., Morgan, G. J., & Davies, F. E. (2005). The bone marrow microenvironment influences the differential chemokine receptor expression of normal and neoplastic plasma cells. Blood, 105(12), 4895-4896.
 
Arruda, J. L., Colburn, R. W., Rickman, A. J., Rutkowski, M. D., & DeLeo, J. A. (1998). Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Res Mol Brain Res, 62(2), 228-235.
 
Asai, Y., Hirokawa, Y., Niwa, K., & Ogawa, T. (2003). Osteoclast differentiation by human osteoblastic cell line SaOS-2 primed with bacterial lipid A. FEMS Immunol Med Microbiol, 38(1), 71-79.
 
Barua, D., Heckathorn, S. A., & Coleman, J. S. (2008). Variation in heat-shock proteins and photosynthetic thermotolerance among natural populations of Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming. J Integr Plant Biol, 50(11), 1440-1451.
 
Beutler, B., Mahoney, J., Le Trang, N., Pekala, P., & Cerami, A. (1985). Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med, 161(5), 984-995.
 
Bianchi, G., Muraglia, A., Daga, A., Corte, G., Cancedda, R., & Quarto, R. (2001). Microenvironment and stem properties of bone marrow-derived mesenchymal cells. Wound Repair Regen, 9(6), 460-466.
 
Collins, R. A., & Oldham, G. (1995). Effect of recombinant bovine IL-1 and IL-2 on B cell proliferation and differentiation. Vet Immunol Immunopathol, 44(2), 141-150.
 
Dastjerdi, M. N. (2006). Induction of Mineralized Nodule Formation in Rat Bone Marrow Storaml Cell Cultures by Silk Fibroin. Iranian Biomedical Journal, 10, 3.
 
Dover, J. S., Phillips, T. J., & Arndt, K. A. (1989). Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation. J Am Acad Dermatol, 20(2 Pt 1), 278-286.
 
D''Souza, S. D., Antel, J. P., & Freedman, M. S. (1994). Cytokine induction of heat shock protein expression in human oligodendrocytes: an interleukin-1-mediated mechanism. J Neuroimmunol, 50(1), 17-24.
 
Gabay, C. (2006). Interleukin-6 and chronic inflammation. Arthritis Res Ther, 8 Suppl 2, S3.
 
Galdiero, M., de l''Ero, G. C., & Marcatili, A. (1997). Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun, 65(2), 699-707.
 
Galligan, C. L., & Coomber, B. L. (2000). Effects of human IL-8 isoforms on bovine neutrophil function in vitro. Vet Immunol Immunopathol, 74(1-2), 71-85.
 
Gogusev, J., Barbey, S., & Nezelof, C. (1996). Regulation of TNF-alpha and IL-1 gene expression during TPA-induced differentiation of "Malignant histiocytosis" DEL cell line t(5;6) (q35:p21). Anticancer Res, 16(1), 455-460.
 
Hamada, Y., Teraok, F., Matsumoto, T., Madachi, A., F. Toki, Uda, E., et al. (2003). Effects of far infrared ray on Hela cells and WI-38 cells. International Congress Series, 1255, 339-341.
 
Hanada, K., Dennis, J. E., & Caplan, A. I. (1997). Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res, 12(10), 1606-1614.  
Havemose-Poulsen, A., & Holmstrup, P. (1997). Factors affecting IL-1-mediated collagen metabolism by fibroblasts and the pathogenesis of periodontal disease: a review of the literature. Crit Rev Oral Biol Med, 8(2), 217-236.
 
Herschel W. Experiments on the refrangibility of the in-visible rays of the Sun (1800). Phil. Trans. Roy. Soc. London, 90, 284.
 
Hiruma, M., Kawada, A., Noguchi, H., Ishibashi, A., & Conti Diaz, I. A. (1992). Hyperthermic treatment of sporotrichosis: experimental use of infrared and far infrared rays. Mycoses, 35(11-12), 293-299.
 
Holman, H. Y., Martin, M. C., Blakely, E. A., Bjornstad, K., & McKinney, W. R. (2000). IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy. Biopolymers, 57(6), 329-335.
 
Honda, K., & Inoue, S. (1988). Sleep-enhancing effects of far-infrared radiation in rats. Int J Biometeorol, 32(2), 92-94.
 
Fesenko, E. E., Makar, V. R., Novoselova, E. G., & Sadovnikov, V. B. (1999). Microwaves and cellular immunity. I. Effect of whole body microwave irradiation on tumor necrosis factor production in mouse cells. Bioelectrochem Bioenerg, 49(1), 29-35.
 
ICNIRP (2006). ICNIRP statement on far infrared radiation exposure. Health Phys, 91(6), 630-645.
 
Ikeda, Y., Biro, S., Kamogawa, Y., Yoshifuku, S., Eto, H., Orihara, K., et al. (2001). Repeated thermal therapy upregulates arterial endothelial nitric oxide synthase expression in Syrian golden hamsters. Jpn Circ J, 65(5), 434-438.
 
Imamura, M., Biro, S., Kihara, T., Yoshifuku, S., Takasaki, K., Otsuji, Y., et al. (2001). Repeated thermal therapy improves impaired vascular endothelial function in patients with coronary risk factors. J Am Coll Cardiol, 38(4), 1083-1088.
 
Inoue, S., & Kabaya, M. (1989). Biological activities caused by far-infrared radiation. Int J Biometeorol, 33(3), 145-150.
 
Ishibashi, J., Yamashita, K., Ishikawa, T., Hosokawa, H., Sumida, K., Nagayama, M., et al. (2008). The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Med Oncol, 25(2), 229-237.
 
Keusch, G. T., Douglas, S. D., Hammer, G., & Braden, K. (1978). Antibacterial functions of macrophages in experimental protein-calorie malnutrition. II. Cellular and humoral factors for chemotaxis, phagocytosis, and intracellular bactericidal activity. J Infect Dis, 138(2), 134-142.
 
Kogut, M. H., He, H., & Kaiser, P. (2005). Lipopolysaccharide binding protein/CD14/ TLR4-dependent recognition of salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene expression in these cells. Anim Biotechnol, 16(2), 165-181.
 
Krakauer, T. (1998). Variability in the sensitivity of nine enzyme-linked immunosorbant assays (ELISAs) in the measurement of human interleukin 6. J Immunol Methods, 219(1-2), 161-167.
 
Krebs, D. L., & Hilton, D. J. (2000). SOCS: physiological suppressors of cytokine signaling. J Cell Sci, 113 ( Pt 16), 2813-2819.
 
Lazutka, J. R., & Rudaitiene, S. (1991). Effect of tumor necrosis factor on cell proliferation kinetics and sister chromatid exchange frequency in human lymphocytes. Carcinogenesis, 12(7), 1355-1357.
 
Leon, L. R. (2002). Invited review: cytokine regulation of fever: studies using gene knockout mice. J Appl Physiol, 92(6), 2648-2655.
 
Liebler, J. M., Kunkel, S. L., Burdick, M. D., Standiford, T. J., Rolfe, M. W., & Strieter, R. M. (1994). Production of IL-8 and monocyte chemotactic peptide-1 by peripheral blood monocytes. Disparate responses to phytohemagglutinin and lipopolysaccharide. J Immunol, 152(1), 241-249.
 
Lin, C. C., Chang, C. F., Lai, M. Y., Chen, T. W., Lee, P. C., & Yang, W. C. (2007). Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J Am Soc Nephrol, 18(3), 985-992.
 
Louie, A., Baltch, A. L., Smith, R. P., Franke, M. A., Ritz, W. J., Singh, J. K., et al. (1994). Tumor necrosis factor alpha has a protective role in a murine model of systemic candidiasis. Infect Immun, 62(7), 2761-2772.
 
Luo, J. C., Shin, V. Y., Yang, Y. H., Wu, W. K., Ye, Y. N., So, W. H., et al. (2005). Tumor necrosis factor-alpha stimulates gastric epithelial cell proliferation. Am J Physiol Gastrointest Liver Physiol, 288(1), G32-38.
 
Masuda, A., Kihara, T., Fukudome, T., Shinsato, T., Minagoe, S., & Tei, C. (2005). The effects of repeated thermal therapy for two patients with chronic fatigue syndrome. J Psychosom Res, 58(4), 383-387.
 
Masuda, A., Koga, Y., Hattanmaru, M., Minagoe, S., & Tei, C. (2005). The effects of repeated thermal therapy for patients with chronic pain. Psychother Psychosom, 74(5), 288-294.
 
Masuda, A., Miyata, M., Kihara, T., Minagoe, S., & Tei, C. (2004). Repeated sauna therapy reduces urinary 8-epi-prostaglandin F(2alpha). Jpn Heart J, 45(2), 297-303.
 
Mocellin, S., Rossi, C. R., Pilati, P., & Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev, 16(1), 35-53.
 
Moseley, P. (2000). Stress proteins and the immune response. Immunopharmacology, 48(3), 299-302.
 
Moore, M. A., Sheridan, A. P., Allen, T. D., & Dexter, T. M. (1979). Prolonged hematopoiesis in a primate bone marrow culture system: characteristics of stem cell production and the hematopoietic microenvironment. Blood, 54(4), 775-793.
 
Nagasawa, H., Udagawa, Y., & Kiyokawa, S. (1999). Evidence that irradiation of far-infrared rays inhibits mammary tumour growth in SHN mice. Anticancer Res, 19(3A), 1797-1800.
 
Ohshiba, T., Miyaura, C., Inada, M., & Ito, A. (2003). Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br J Cancer, 88(8), 1318-1326.
 
Ohta, M., & Saito, M. (1991). [Regeneration of bone marrow tissue. Growth and differentiation of hematopoietic stem cells and the role of bone marrow microenvironment on hematopoiesis]. Hum Cell, 4(3), 212-221.
 
Paulesu, L. (1997). Cytokines in mammalian reproduction and speculation about their possible involvement in nonmammalian viviparity. Microsc Res Tech, 38(1-2), 188-194.
 
Peters, M., Jacobs, S., Ehlers, M., Vollmer, P., Mullberg, J., Wolf, E., et al. (1996). The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6. J Exp Med, 183(4), 1399-1406.
 
Podar, K., Richardson, P. G., Hideshima, T., Chauhan, D., & Anderson, K. C. (2007). The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol, 20(4), 597-612.
 
Radeff-Huang, J., Seasholtz, T. M., Chang, J. W., Smith, J. M., Walsh, C. T., & Brown, J. H. (2007). Tumor necrosis factor-alpha-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression. J Biol Chem, 282(2), 863-870.
 
Rafii, S., Avecilla, S., Shmelkov, S., Shido, K., Tejada, R., Moore, M. A., et al. (2003). Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann N Y Acad Sci, 996, 49-60.
 
Scheid, C., Young, R., McDermott, R., Fitzsimmons, L., Scarffe, J. H., & Stern, P. L. (1994). Immune function of patients receiving recombinant human interleukin-6 (IL-6) in a phase I clinical study: induction of C-reactive protein and IgE and inhibition of natural killer and lymphokine-activated killer cell activity. Cancer Immunol Immunother, 38(2), 119-126.
 
Schumann, R. R. (1992). Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol, 143(1), 11-15.
 
Segovia, M., Gordillo, F. J., & Figueroa, F. L. (2003). Cyclic-AMP levels in the lichen Evernia prunastri are modulated by light quantity and quality. J Photochem Photobiol B, 70(3), 145-151.
 
Shiurba, R., Hirabayashi, T., Kiyokawa, S., Fukui, A., Miyanaga, Y., Kojima, I., et al. (1999). Evidence that far-infrared radiation promotes growth of Xenopus laevis. Adv Space Res, 23(12), 2041-2044.
 
Short, B., Brouard, N., Occhiodoro-Scott, T., Ramakrishnan, A., & Simmons, P. J. (2003). Mesenchymal stem cells. Archives of Medical Research 34, 565-571.
 
Siese, A., Jaros, P. P., & Willig, A. (1999). Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1. Scand J Immunol, 49(2), 139-148.
 
Simon, C., & Polan, M. L. (1994). Cytokines and reproduction. West J Med, 160(5), 425-429.
 
Simpson, D. W., Roth, R., & Loose, L. D. (1979). A rapid, inexpensive and easily quantified assay for phagocytosis and microbicidal activity of macrophages and neutrophils. J Immunol Methods, 29(3), 221-226.
 
Singh, A. K., & Jiang, Y. (2003). Lipopolysaccharide (LPS) induced activation of the immune system in control rats and rats chronically exposed to a low level of the organothiophosphate insecticide, acephate. Toxicol Ind Health, 19(2-6), 93-108.
 
Skoog, D.A. and Leary, J.J(1992). Principles of Instrumental Analysis 4th Ed. Saunders College Pulishing, 264-279.
 
Skoog, DA, Holler FJ, Nieman TA(1998). Principles of Instrumental Analysis 5ed, Hartcourt Brace and Company, Florida, 397.
 
Song, C. W. (1984). Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res, 44(10 Suppl), 4721s-4730s.
 
Sujata, L., & Chaudhuri, S. (2008). Stem cell niche, the microenvironment and immunological crosstalk. Cell Mol Immunol, 5(2), 107-112.
 
Tanaka, S., Nakamura, K., Takahasi, N., & Suda, T. (2005). Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev, 208, 30-49.
 
Tei, C., Horikiri, Y., Park, J. C., Jeong, J. W., Chang, K. S., Tanaka, N., et al. (1994). [Effects of hot water bath or sauna on patients with congestive heart failure: acute hemodynamic improvement by thermal vasodilation]. J Cardiol, 24(3), 175-183.
 
Tournier, J. N., Hellmann, A. Q., Lesca, G., Jouan, A., Drouet, E., & Mathieu, J. (2003). Fever-like thermal conditions regulate the activation of maturing dendritic cells. J Leukoc Biol, 73(4), 493-501.
 
Toyokawa, H., Matsui, Y., Uhara, J., Tsuchiya, H., Teshima, S., Nakanishi, H., et al. (2003). Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med (Maywood), 228(6), 724-729.
 
Tsan, M. F., & Gao, B. (2004). Cytokine function of heat shock proteins. Am J Physiol Cell Physiol, 286(4), C739-744.
 
Udagawa, Y., Ishigame, H., & Nagasawa, H. (2002). Effects of hydroxyapatite in combination with far-infrared rays on spontaneous mammary tumorigenesis in SHN mice. Am J Chin Med, 30(4), 495-505.
 
Vavrova, J. (1995). Role of IL-1 and TNF in the ribomunyl-induced radio-protection. Folia Biol (Praha), 41(1), 23-30.
 
Vistica, D. T., Skehan, P., Scudiero, D., Monks, A., Pittman, A., & Boyd, M. R. (1991). Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res, 51(10), 2515-2520.
 
Willenberg, H. S., Path, G., Vogeli, T. A., Scherbaum, W. A., & Bornstein, S. R. (2002). Role of interleukin-6 in stress response in normal and tumorous adrenal cells and during chronic inflammation. Ann N Y Acad Sci, 966, 304-314.
 
Yanagita, M. (2005). BMP antagonists: their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev, 16(3), 309-317.
 
Yokoyama, T., Komori, A., Nakamura, M., Takii, Y., Kamihira, T., Shimoda, S., et al. (2006). Human intrahepatic biliary epithelial cells function in innate immunity by producing IL-6 and IL-8 via the TLR4-NF-kappaB and -MAPK signaling pathways. Liver Int, 26(4), 467-476.
 
Yu, S. Y., Chiu, J. H., Yang, S. D., Hsu, Y. C., Lui, W. Y., & Wu, C. W. (2006). Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed, 22(2), 78-86.
 
Zieleniewski, W., Zieleniewski, J., & Stepien, H. (1995). Interleukin-1 beta, but not IL-1 alpha, stimulates cell proliferation in the adrenal cortex. Cytobios, 84(338-339), 199-204.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 遠紅外線熱療對第二型糖尿病中老年患者之效應
2. 遠紅外線對腦中風後肩關節失能患者之影響
3. 以力學觀點評估舒痕凝膠和遠紅外線照射對傷口癒合的影響
4. 使用遠紅外線腧穴治療對於血液透析患者經絡與疲憊症狀改善之成效探討
5. 遠紅外線對於服用荷爾蒙補充療法之停經後期婦女更年期困擾症狀及體內自由基改善成效之探討遠紅外線對於服用荷爾蒙補充療法之停經後期婦女更年期困擾症狀及體內自由基改善成效之探討體內自由基改善成效之探討
6. 遠紅外線照射內關穴對心臟自主神經的影響在人與老鼠的模式
7. 遠紅外線對於人體超氧陰離子變異及自律神經系統活性之影響
8. 第一型原血紅素加氧酶於血液透析病患動靜脈瘻管功能扮演之角色:基因多型性表現之預後關聯性及遠紅外線治療之調節機轉
9. 以多重生理參數評估遠紅外線熱療儀與低週波電刺激對肌肉疲勞改善之研究
10. 遠紅外線應用於糖尿鼠傷口治療之實驗系統設計
11. 遠紅外線穴位熱敷貼於老人失眠患者照護成效之探討
12. 比較遠紅外線及熱敷腧穴治療對血液透析病人自律神經活性及生活品質之影響
13. 遠紅外線對於停經後婦女骨質密度相關因子之成效探討
14. 遠紅外線敷貼對於社區中年婦女腰酸背痛指數及經絡改善成效之探討
15. 用以探討遠紅外線對生物體表層與深層血流影響之實驗系統設計