跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:尤志豪
研究生(外文):Chin-hao Yu
論文名稱:考量電壓島佈局環境之X架構時脈繞線
論文名稱(外文):The X-Architecture Clock Routing With Considering Voltage-Island Placement
指導教授:蔡加春蔡加春引用關係
指導教授(外文):Chia-chun Tsai
學位類別:碩士
校院名稱:南華大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:X繞線功率消耗多重電壓佈局零時脈差異電壓島
外文關鍵詞:multi-voltage placementzero-skewvoltage islandX-routingpower consumption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
  時脈繞線(clock routing)在VLSI設計系統中,延遲時間、總繞線長度及功率消耗是影響系統效能甚巨的三個因素,而不同的繞線方法除了影響到繞線長度,相對地也會影響延遲時間的增減和功率消耗,這些都是在積體電路的繞線技術中需要被關注的問題。
 
  其次,由延遲時間引申而來的時脈差異(clock skew)也是我們關心的問題,過於嚴重的時脈差異所引起的訊號時間差,同樣的對系統效能也會產生負面影響,所以在理想的VLSI設計目標上,我們通常希望可以達到所謂的零時脈差異(zero-skew),亦被稱為零時脈差異時脈樹(zero-skew clock tree)。
 
  目前的VLSI設計環境中,電壓島的佈局環境已非常普及,且多電壓島的考量更可節省功率的消耗量,因此,在多電壓島的佈局環境下,不得不重視時脈繞線的問題。本篇論文的主要研究即是基於這樣的考量,使用一種稱為DME-X的時脈繞線法及兼具有翻轉(flip)考量的DME-XP演算法,即結合X結構與DME演算法,應用在不同區塊配置不同電壓源的多電壓島佈局環境中,完成零時脈差異X結構時脈樹,以降低延遲時間、繞線長度、穿孔數及功率消耗等因素;並比較不同的佈局環境條件下,進一步解析這些因素的變化性。
 
  根據我們提出的DME-XP時脈繞線方法應用在IBM之五個標準例子,將每個例子分割為二至三個電壓島佈局情況下,與原始單電壓島之實驗結果做比較。在雙電壓島的情況下,其延遲時間平均增加了12.8%,繞線長度僅增加了0.3%,穿孔數則是減少0.74%,而功率消耗則是降低了14%;在三電壓島的情況下,其延遲時間平均減少了27.1%,繞線長度僅增加了0.3%,穿孔數則僅增加0.24%,但功率消耗更是降低了25%。從這些比較結果,顯示我們的時脈繞線方法對多重電壓島佈局環境是有效的,尤其是在降低功率消耗方面。
 Considering the clock routing in a VLSI design system, clock delay, total wire length, and power consumption are three essential factors to impact the system performance. Different routing methods result the various total wire lengths and also make some influences to the clock delay and power consumption. These are needed to pay attention in the VLSI routing techniques.
 
 Clock skew is another important factor which is caused from different clock delays. An enough large clock skew can make very negative effects for the system performance. Therefore, the ideal objective of clock routing is that we expect to obtain an exact zero-skew clock tree to a VLSI system.
 
 In the recent VLSI design environment, the voltage-island placement is most one of universal methodologies to save the power consumption in physical design. So, we cannot ignore the clock routing problem in the voltage-island placement environment. The main structure in this thesis is to solve the above clock routing problem in the voltage-island placement by using DME-XP routing method which is considering the post refinement of an extra flip. These methods are based on X-architecture and DME algorithm to make X-clock routing which can reduce total wire length and clock delay. Moreover, we apply the above X-clock routing in a multiple voltage-island placement to construct a zero-skew X-architecture clock tree. Then, we observe the effects in terms of clock delay, wire length, via cost, and power consumption from the results at different placements.
 
 The proposed approach of DME-XP has applied to the IBM five benchmarks, which are partitioned into two- and three-voltage-island placements. According to our experiments, we compare their results with that of original placement using the same DME-XP clock routing. For the cases of two-voltage island, the clock delay and total wire length increase 12.8% and 0.3% on average, respectively; however, the via cost and power consumption reduce 0.74% and 14.2% on average, respectively. For the cases of three-voltage islands, the total wire length and via cost increase 0.3% and 0.24% on average, respectively; however, the clock delay and power consumption decrease up to 27.1% and 14.2% on average, respectively. From above comparisons, our X-clock routing approach is effective for a multi-voltage island placement, especially in the reduction of power consumption.
書名頁.........I
論文口試合格證明.........IV
誌謝.........V
中文摘要.........VII
Abstract.........VIII
目錄.........X
圖目錄.........XII
表目錄.........XV
 
第一章、緒論.........1
 第一節 前言.........1
 第二節 研究動機.........3
 第三節 論文架構.........4
 
第二章、背景介紹.........6
 第一節 延遲模型(Delay model).........6
 第二節 時脈繞線......... 8
  2-2-1 時脈延遲(Clock delay).........9
  2-2-2 時脈差異(Clock skew).........9
  2-2-3 零時脈差異(Zero-skew)的建構.........11
 第三節 GMA時脈繞線演算法.........14
 第四節 DME時脈繞線演算法.........16
  2-4-1 DME時脈繞線演算法背景.........16
  2-4-2 DME時脈繞線演算法說明.........17
  2-4-3 DME時脈繞線演算法詳述.........21
 第五節 X架構下的DME時脈繞線.........25
  2-5-1 DME-4時脈繞線演算法.........26
  2-5-2 DME-X時脈繞線演算法.........27
 
第三章、問題描述.........29
 第一節 X-topology表之建置.........29
 第二節 時脈繞線問題定義.........31
 第三節 延遲模型與功率消耗評估.........33
 第四節 位準轉換器(Level shifter).........36
 
第四章、研究方法.........38
 第一節 具電壓島之時脈繞線架構.........38
 第二節 DME-XP時脈繞線方法.........39
 第三節 電壓島時脈繞線的分工與整合.........45
 第四節 多重電壓島DME-XP時脈繞線演算法.........50
 
第五章、實驗結果.........52
 第一節 實驗參數設定.........52
 第二節 時脈繞線結果.........54
  5-2-1 單電壓島的X時脈繞線結果.........55
  5-2-2 雙電壓島的X時脈繞線結果.........57
  5-2-3 三電壓島的X時脈繞線結果.........61
 第三節 多電壓島X時脈繞線結果之比較.........65
 第四節 X時脈繞線完成圖.........69
 
第六章、結論與未來展望.........73
 
參考文獻.........74
 
附錄I 論文發表:南華大學2009資訊管理暨電子商務經營管理研討會「考量電壓島佈局環境之X架構時脈繞線」.........78
附錄II 全實驗之X時脈繞線完成圖.........86
[1] 吳俊德,“多重電壓源的低功率及零時脈差異之時脈樹設計”,私立中原大學資訊工程研究所碩士論文, July 2005.
 
[2] 高健文,“RLC時脈繞線之串音分析與減少”,國立臺北科技大學電腦與通訊研究所碩士論文, July 2005.
 
[3] 劉亦章,“考慮電壓降之零時脈差異時脈樹研究”,私立中原大學資訊工程研究所碩士論文, July 2005.
 
[4] Chia-Chun Tsai, Jan-Ou Wu, Yu-Ting Shieh, Chung-Chieh Kuo, and Trong-Yen Lee, “Tapping Point Numerical-Based Search for Exact Zero-Skew RLC Clock Tree Construction,” IEEE Asia-Pacific Conference on Circuits and Systems, 4-7 Dec., 2006, pp. 813-816.
 
[5] S.P. Shang, X.-D. Hu, and Tong Jing, “Average Lengths of Wire Routing under M-Architecture and X-Architecture,” IEEE International Symposium on Circuits and Systems, May 2006 , pp. 321-324.
 
[6] Weixiang Shen, Yici Cai, Jiang Hu, Xianlong Hong, and Bing Lu, “High Performance Clock Routing in X-Architecture,” IEEE International Symposium on Circuits and Systems, May 2006, pp. 2081-2084.
 
[7] Rajaram Anand, Jiang Hu, and Mahapatra Rabi, “Reducing Clock Skew Variability Via Crosslinks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, June 2006, pp. 1176-1182.
 
[8] Jan-Ou Wu, Chia-Chun Tsai, Chung-Chieh Kuo, and Trong-Yen Lee, “Zero-Skew Driven for Buffered RLC Clock Tree Construction,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E90-A, No. 3, March 2007, pp. 651-658.
 
[9] Chia-Chun Tsai, Chung-Chieh Kuo, Jan-Ou Wu, Trong-Yen Lee, and Rong-Shue Hsiao, “A Topology-Based Construction for X-Architecture Clock Routing,” The 18th VLSI Design/CAD Symposium, August 2007, pp. 166-169.
 
[10] Chia-Chun Tsai, Jan-Ou Wu, Chung-Chieh Kuo, Trong-Yen Lee, and Rong-Shue Hsiao, “Delay Modeling for RLC Trees with LU Decomposition Matrice,” IEEE The Fourth International Conference on Information Technology and Applications, 15-18 Jan., 2007, pp. 688-692.
 
[11] Chia-Chun Tsai, Wei-Shi Lin, Jan-Ou Wu, Chung-Chieh Kuo, Trong-Yen Lee, and Rong-Shue Hsiao, “Layer Assignment Considering Manufacturability in X-Architecture Clock Tree,” IEEE International Conference on Computer and Information Technology, 8-11 July, 2008, pp. 880-885.
 
[12] Wai-Kei Mak, and Jr-Wei Chen, “Voltage Island Generation under Performance Requirement for SoC Designs,” Design Automation Conference in Asia and South Pacific, 23-26 Jan., 2007, pp. 798-803.
 
[13] Ming-Ching Lu, Meng-Chen Wu, Hung-Ming Chen, and Hui-Ru Jiang, “Performance Constraints Aware Voltage Islands Generation in SoC Floorplan Design,” IEEE International SOC Conference, 24-27 Sept., 2006, pp. 211- 214.
 
[14] Ren-Song Tsay, “An Exact Zero-Skew Clock Routing Algorithm,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 12, Feb. 1993, pp. 242-249.
 
[15] Jingcao Hut, Youngsoo Shins, Nagu Dhanwadat, and Radu Marculescut, “Architecting Voltage Islands in Core-based System-on-a-Chip Designs,” Proceedings of The International Symposium on Low Power Electronics and Design, 2004, pp. 180-185.
 
[16] Wan-Ping Lee, Hung-Yi Liu, and Yao-Wen Chang, “An ILP Algorithm for Post-Floorplanning Voltage-Island Generation Considering Power-Network Planning,” IEEE/ACM International Conference on Computer-Aided Design, 4-8 Nov., 2007, pp. 650-655.
 
[17] Arif Ishaq AbouSeido, Brian Nowak, and Chris Chu, “Fitted Elmore Delay: A Simple and Accurate Interconnect Delay Model,” IEEE Transactions on Very Large Scale Integration Systems, Vol. 12, Issue 7, July 2004, pp. 691-696.
 
[18] Jason Cong and Zhigang (David) Pan, “Interconnect Performance Estimation Models for Design Planning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, Issue 6, June 2001, pp. 739-752.
 
[19] Tai-Chen Chen, Song-Ra Pan, and Yao-Wen Chang, “Timing Modeling and Optimization under The Transmission Line Model,” IEEE Transactions on Very Large Scale Integration Systems, Vol. 12, Issue 1, Jan. 2004, pp. 28-41.
 
[20] Kenneth D. Boese and Andrew B. Kahng, “Zero-Skew Clock Routing Trees with Minimum Wirelength,” Proceedings of Fifth Annual IEEE International ASIC Conference and Exhibit, 21-25 Sept., 1992, pp. 17-21.
 
[21] Andrew Kahng, Jason Cong, and Gabriel Robins, “High-Performance Clock Routing Based on Recursive Geometric Matching,” The 28th ACM/IEEE Design Automation Conference, 17-21 June, 1991, pp. 322-327.
 
[22] Jeng-Liang Tsai, Tsung-Hao Chen, and Charlie Chung-Ping Chen, “Zero-skew Clock-Tree Optimization With Buffer Insertion/Sizing and Wire Sizing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 23, Issue 4, April 2004, pp. 565-572.
 
[23] Yehea I. Ismail, Eby G. Friedman,and Jos�� L. Neves, “Equivalent Elmore Delay for RLC Trees,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, Issue 1, Jan. 2000, pp. 83-97.
 
[24] W. C. Elmore, “The Transient Response of Damped Linear Network with Particular Regard to Wideband Amplifiers,” J. Applied Physics, 1948, pp. 55–63.
 
[25] T. H. Chao, Y. C. Hsu, and J. M. Ho, “Zero Skew Clock Net Routing,” ACM/IEEE Design Automation Conf., 1992, pp. 518-523.
 
[26] T. H. Chao, Y. C. Hsu J. M. Ho, K. D. Boese and A. B. Kahng, “Zero Skew Clock Routing With Minimum Wirelength,” IEEE Transactaons on Computers and Systems, 1992, pp. 799-814.
 
[27] R. S. Tsay, “Exact Zero Skew,” IEEE International Conference on Computer-Aided Design, 1991, pp. 336-339.
 
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top