跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佳蓉
研究生(外文):Jia-rong Lin
論文名稱:半導體製造機台組態配置之研究
論文名稱(外文):A Study of Tool Portfolio Allocation for Semiconductor Manufacturing
指導教授:李翔詣李翔詣引用關係
指導教授(外文):Hsiang-yi Lee
學位類別:碩士
校院名稱:南華大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:49
中文關鍵詞:瓶頸製程機台組態靜態產能模型混合整數規劃
外文關鍵詞:tool portfoliokey processstatic capacity modelmixed integer programming
相關次數:
  • 被引用被引用:3
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
  在傳統上,許多半導體製造廠採用靜態產能模型搭配人工試誤的方法進行機台組態規劃,但該方法在產能驟然變化時,無法即時且彈性地得到合理的機台組態。故本研究發展一套改良式機台組態規劃系統。此系統具有二種功能,首先是在產能過剩的情況下,建立生產線機台縮減之規則,以配合公司縮減成本之考量;再者也可以於產量回升時,尋找關鍵瓶頸製程,讓使用者據此進行機台組態之調整。此線性規劃模型利用靜態產能模型結合混合整數規劃之特性,進行模型之建構。此模型二個部份分別為:「機台縮減規則」以及「關鍵瓶頸製程找尋」,二者藉由環環相扣的方式進行一連串機台組態規劃之動作。其主要觀念建構分別為:在符合排定的主排程表前提下,機台數量最小化;在滿足新的主排程表與不改變現有機台組態前提之下,各製程所必須增加的MOVE數最小化。
 
  本研究透過半導體製造廠商所提供之各項實際生產線運作資料進行驗證得到不錯的結果,其平均運算皆在50秒內。初步來說,本研究所提出之改良式機台組態規劃系統具有一定的實用價值。
  The objective of this study is to develop a system for the semiconductor tool portfolio allocation with three functions: tool portfolio for maximization output, minimization of operation tool for MPS and identification of key processes when capacity is not enough. As semiconductor industry is very capital intensive, it is important to allocate the tool portfolio efficiently. However, as the tool capacity ceiling varies based on whether it is used in single process or not. It is very time consuming to find a feasible solution via spreadsheet manually as industry currently does. Besides, demand changes rapidly in today’s market. Therefore, this study developed a system that could minimize the number of operation tool as the demand shrinks and determine the critical process when demand booms.
 
  This study adapts the mixed integer programming method and introduces some binary integer to indicate the status of tool usage, tool usage in certain process …etc. And find the optimal solution via these binary integer variables. On the other hand, a variable for the extra capacity demand is introduced in identifying the key processes. The processes with positive extra capacity demand are the key processes when capacity does not meet demand MPS. A validation using factory MPS showed that this system could quickly provide the satisfactory solution when the demand varies.
第一章、緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究限制 4
 
第二章、文獻探討 5
第一節 機台組態 5
第二節 系統瓶頸 13
 
第三章、研究方法 16
第一節 機台縮減規則 17
第二節 關鍵瓶頸製程找尋 24
 
第四章、實例驗證與數據分析 27
第一節 生產線資料建立 27
第二節 LINGO運算及結果 30
第三節 數據分析 33
 
第五章、結論與未來展望 36
第一節 結論 36
第二節 未來展望 38
 
參考文獻 39
 
附錄 42
[1]呂金隆,晶圓製造廠瓶頸管理模式之研究,碩士論文,華梵大學,2002。
 
[2]吳全順,晶圓廠機台組態之經濟分析與優化,碩士論文,台灣大學,2001。
 
[3]許治平,結合模擬及啟發式解法求解半導體廠機台組態決策,碩士論文,成功大學,2005
 
[4]經濟部投資業務處,半導體產業分析及投資機會,民國97年2月。
 
[5]練鴻展,機台產能配置輔助系統與實證研究,碩士論文,南華大學,2008。
 
[6] Bardm, J. F., Srinivasan, K., & Tirupati, D. “An optimization approach to capacity expansion in semiconductor manufacturing facilities.” International Journal of Production Research, 37, 3359–3382 (1999).
 
[7] Bretthauer K. M.. “Capacity planning in manufacturing and computer networks.” European Journal of Operations Research, 19, 386–394 (1996).
 
[8] Chen, L. H., & Chen, Y. H. “A design procedure for a robust job shop manufacturing system under a constraint using computer simulation experiments.” Computers & Industrial Engineering, 30, 1–12 (1996).
 
[9] Chou, Y. C., & You, R. C. “A resource portfolio planning methodology for semiconductor wafer manufacturing.” InternationalJournal of Advanced Manufacturing Technology, 18, 12–19 (2001).
 
[10] Chou, Y. C., & Wu, C. S. “Economic analysis and optimization of tool portfolio in semiconductor manufacturing.” IEEE Transactions on Semiconductor Manufacturing, 15(4), 447–453 (2002).
 
[11] Chung, S. H., Hsieh, M. H.. “A tool portfolio elimination mechanism (TPEM) for a wafer fab.” In Proceedings of Semiconductor Manufacturing Technology Workshop, Hsin-chu, Taiwan, 51–53 (2004).
 
[12] Donohue, K. L., Hopp, W. J., & Spearman, M. L. “Optimal design of stochastic production lines: A dynamic programming approach.” IIE Transactions, 34, 891–903 (2002).
 
[13] Grewal, N. S., Bruska, A. C., Wulfm, T. M., Robinson, J. K. “Integrating targeted cycle-time reduction into the capital planning process.” In Proceeding of Winter Simulation Conference Washington, USA, 1005–1010 (1998).
 
[14] Hock, N. C., Queueing Modelling Fundamentals, Wiley, NY (1996).
 
[15] Hsieh, M. H., Lin, T. K. “MFE Practice: Manufacturing
 
flexibility enhancement for multi-site fab production.” In Proceeding of IEEE/SEMI Semiconductor Manufacturing Technology Workshop, Hsin-chu, Taiwan , 193–194 (2002).
 
[16] Hua, Z., & Banerjee, P. “Aggregate line capacity design for PWB assembly system.” International Journal of Production Research, 38, 2417–2441 (2000).
 
[17] Iwata, Y., Taji, K., & Tamura, H. “Multi-objective capacity planning for agile semiconductor manufacturing.” Production Planning and Control, 14(3), 244–254 (2003).
 
[18] Neudorff, J. “Static Capacity Analysis Using Microsoft Visual Basic.” International Conference on Semiconductor Manufacturing Operational Modeling and simulation, 207-212 (1999)
 
[19] Occhino, Thomas J., “Capacity Planning Model: The Important Inputs, Formulas, and Benefits,” 2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 455-458 (2000).
 
[20] Lawrence, S. R. and Buss, A. H., “Shifting Production Bottlenecks: Causes, Cures, and Conundrums.” Production and Operations Management, Vol.3, No.1, 21-38 (1994).
 
[21] Lin, S.Y., Chang, Y.C. and Chou, Y.C., ”Application of Stochastic Programming to Tool Portfolio Planning in Semiconductor Manufacturing.” Journal of Management & System, Vol.12, No.4, 1-15 (2005).
 
[22] Swaminathan, J. M. “Tool capacity planning for semiconductor fabrication facilities under demand uncertainty.” European Journal of Operations Research, 120, 545–558 (2000).
 
[23] Swaminathan, J. M. “Tool procurement planning for wafer fabrication facilities: A scenario-based approach.” IIE Transactions, 34, 145–155 (2002).
 
[24] Wang, K. J., & Lin, S. H. “Capacity expansion and allocation for a semiconductor testing facility under constrained budget.” Production Planning and Control, 13(5), 429–437 (2002).
 
[25] Witte, J. D. “Using static modeling techniques in semiconductor manufacturing.” In Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Cambridge, MA, 31-35 (1996).
 
[26] Wu, M. C., Hsiung, Y., & Hsu, H. M. “A tool planning approach considering cycle time constraints and demand uncertainty.”International Journal of Advanced Manufacturing Technology, 26, 565–571 (2005).
 
[27] Wu,W. F., Yang, J. L., Liao, J. T. “Static capacity checking system with cycle time considered.” In Proceeding of the 7th International Symposium of Semiconductor Manufacturing, Tokyo, Japan, 307–310 (1998).
 
[28] Yang, J. L. An approach to determine appropriate fab development plans by taking space constraints and cost-effectiveness into consideration. In Proceeding of the 9th International Symposium of Semiconductor Manufacturing, Tokyo, Japan, 217–220 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top