跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊慶祥
研究生(外文):Ching-hsiang Chuang
論文名稱:允許延遲付款情況下考慮缺貨及剩餘價值的二階段退化商品存貨模式
論文名稱(外文):Inventory Model for Non- instantaneous Deteriorating Items with Shortages and Permissible Delay in Payment
指導教授:莊鎧溫莊鎧溫引用關係
指導教授(外文):Kai-wen Chuang
學位類別:碩士
校院名稱:南華大學
系所名稱:企業管理系管理科學碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:欠撥率補貨率信用交易剩餘價值存貨模式
外文關鍵詞:Credit tradeSurplus valueInventory ModelSupply ProbabilityOwe and dial Probability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究的目的在信用交易情況下建立二階段退化性商品具有剩餘價值且部分欠撥的條件下之存貨模式。需求率分別以需求為固定常數、線性函數及指數遞減函數的情形下探討。並假設在補貨開始商品並不會有損耗的情況,而在某時段開始商品呈現固定的損耗率。在某時間點前損耗的商品具有剩餘價值,可繼續販售商品取得利潤,而時間點後的商品無法販售且須付出額外的處理成本。另外,很多商品(例如流行性商品或民生必需品)在缺貨發生時,等候補貨時間的長短往往是接受欠撥意願的主要關鍵。因此,本文考慮此部分欠撥情形以符合實際交易行為。
   
  文中對所建構的數理存貨模式利用傳統的最佳化原理找出最適的訂購策略,以使存貨相關總成本為最少。最後,舉例說明模式的求解過程並對各參數做敏感性分析。
  This research stock way under the terms of setting up two stage degradating goods and is worth remaining and owe and set aside partly under the trade situation of credit of purpose. The demand rate regards demand as the situation of fixed constant, linear function and decreasing function of index and puts the discussion separately. Suppose and mend the goods that beginning the goods will have no situation lossed, but begin the goods to present the fixed proportion of goods damaged in some period. The goods lossed before some time point are worth remaining, can continue selling the goods and deriving a profit, the goods after the time point are unable to sell and must pay the extra treatment cost. In addition, a lot of goods (such as the epidemic goods or people''s livelihood necessities) In in short supply happen, wait for, mend goods size of time accept, owe main key to dial the will often. So, this text considers this part owes and sets aside the situation in order to the trading activity of corresponding to reality.
  
  Utilize the traditional optimization principle to find out the optimum order tactics to the stocks ways of mathematics and physics constructed built in the article, in order to enable the relevant total cost of stocks the fewest. Finally, illustrate asking the course of solving and making sensitiveness analysis to every parameter of the way with examples.
中文摘要i
英文摘要ii
目錄iii
表目錄v
圖目錄vi
第一章緒論1
1.1研究動機與目的1
1.2文獻探討2
1.3研究方法5
1.4研究架構5
         
第二章需求固定考慮遞延付款及剩餘價值且允許缺貨之退化性產品存貨模式7
2.1符號及假設7
2.2模式建立9
2.2.1演算法15
2.3數值範例15
2.4敏感度分析16
                
第三章考慮線性需求遞延付款及剩餘價值且允許缺貨之退化性產品存貨模式25
3.1模式建立25
3.1.1演算法32
3.2數值範例32
3.3敏感度分析33
                     
第四章需求呈指數遞減且考慮在遞延付款情況下剩餘價值及允許缺貨之退化性產品存貨模式44
4.1模式建立44
4.1.1演算法51
4.2數值範例51
4.3敏感度分析52
                     
第五章結論63
5.1主要研究成果63
5.2後續研究方向65
               
參考文獻 一、英文部分66
1. Baker, R. C. and Urban, T. L.(1988) , A deterministic inventory systemwith an inventory-level-dependent demand rate. Journal of theOperational Research Society , Vol.39, pp. 823- 831.
 
2. Bhunia, A. K. and Maiti, M.(1997) ,Deterministic inventory models forvariable production. Journal of the Operational Research Society , Vol.48,pp. 221- 224
 
3. Bose, S., Goswami, A. and Chaudhuri, K. S.(1995) ,An EOQ modelfor deteriorating items with linear time-dependent demand rate andshortage under inflation and time discounting. Journal of theOperational Research Society , Vol.46, pp. 507- 782.
 
4. Chang, H. J. and Dye, C. Y.(1999) , An EOQ model for deterioratingitems with time varying demand and partial backlogging , Journal ofthe Operational Research Society , Vol.50, pp. 1176-1182.
 
5. Covert, R. B. and Philip, G. S.(1973) , An EOQ model with Weibull distribution deterioration, AIIE Transactions, Vol.5, pp. 323-326.
 
6. Datta, T. K. and Pal, A. K.(1990) , A note on an inventory model with inventory-level-dependent demand rate. Journal of the Operational Research Society , Vol.41, pp. 971- 975.
 
7. Dave, U. and Patel, L.K.(1981),(T, Si) Policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, Vol.32, pp. 137- 142.
 
8. Donaldson, W. A. (1977), Inventory Replenishment Policy for aLinear Trend in Demand-an Analytical Solution, OperationalResearch Quarterly,Vol.28, pp.663-670.
 
9. Ghare, P. M. and Schrader, G. H.(1963), A model for exponentially decaying inventory system. International Journal of Production Research, Vol.21, pp. 449-460.37
 
10. Goswami, A. and Chaudhuri, K. S.(1991), EOQ model for an inventory with a linear trend in demand and finite rate of replenishment considering shortages . International Journal of Systems Science, Vol.22,pp. 181-187.
 
11. Goswami, A. and Chaudhuri, K. S.(1992), Variations of order-level inventory models for deteriorating items. International Journal of Production Economics, Vol.28, pp. 111-117.
 
12. Gupta, R. and Vrat, P.(1986), Inventory model with multi-items under constraint systems for stock dependent consumption rate. Oper. Res,Vol.24,pp.41-42
 
13. Heng, K. J., Labban, J. and Linn, R. J.(1991) , An order-level lot-size inventory model for deteriorating items with finite replenishment rate. Computers & Industrial Engineering, Vol.20,No.2, pp. 187-197.
 
14. Hollier, R. H. and Mak, K. L.(1983) , Inventory replenishment policies for deteriorating items in a declining market. International Journal of Production Research, Vol. 21, pp. 813-826.
 
15. Mak, K. L.(1982) , A production lot size inventory model for deteriorating items. Computers & Industrial Engineering, Vol. 6,No.4, pp. 309-317.
 
16. Mandal, B. N. and Phaujdar, S.(1989) , An inventory model for deteriorating items and stock-dependent consumption rate. Journal of the Operational Research Society , Vol.40, pp. 483-488.
 
17. Misra, R. B.(1975) , Optimum production lot size model for a system with deteriorating inventory, International Journal of Production Research, Vol. 13, pp. 495-505.38
 
18. Padmanabhan, G. and Vrat, P.(1995) , EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, Vol.86, pp. 281-292.
 
19. Park, K. S.(1982) , Inventory models with partial backorders. International Journal of Systems Science, Vol.13, pp. 1313-1317.
 
20. Philip, G. C.(1974) , A generalized EOQ model for items with Weibull distribution, AIIE Transactions, Vol.6,pp. 159-162.
 
21. Raafat, F., Wolfe, P. M. and Eldin, H. K.(1991) , An inventory model for deteriorating items. Computers & Industrial Engineering, Vol.20,No.2, pp. 89-94.
 
22. Shah, Y. K.(1977) , An order-level lot-size inventory model for deteriorating items. AIIE Transactions, Vol.9,No.1, pp. 108-112.
 
23. Su, C. T., Lin, C. W. and Tsai, C. H.(1999) , A deterministic production inventory model for deteriorating items with an exponential declining demand. Operational Research Society of India,Vol.36, No.2, pp. 95-106.
 
24. Su, C. T., Tong, L. I. and Liao, H. C.(1996) , An inventory model under inflation for stock dependent consumption rate and exponential decay.Operational Research Society of India,Vol.33, pp. 71-82.
 
25. Wee, H. M.(1995) , A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers and Operations Research, Vol.22, pp. 345-356.
 
26. Wu, J. W., Lin, C., Tan, B. and Lee, W.C.(1999),An EOQ inventory model with ramp type demand rate for items with Weibull deterioration. International Journal of Information and Management Sciences, Vol.10, No.3, pp. 41-51.
 
27. Wu, K. S. and Ouyang, L. Y.(2000),A replenishment policy for deteriorating items with ramp type demand rate. Proceedings of the National Science Council, Part A, Vol.24, No.4, pp. 279-286.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊