跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳婉甄
研究生(外文):Wan-chen Wu
論文名稱:台灣西南沿海地區地下水養殖虱目魚之砷、鋅、銅累積及食用風險評估研究
論文名稱(外文):Risk associated with intake of cultured milkfish(Chanos chanos)from the ponds contaminated by arsenic, zinc and copper in the coastal area of southwest Taiwan
指導教授:林明炤林明炤引用關係
指導教授(外文):Ming-chao Lin
學位類別:碩士
校院名稱:南華大學
系所名稱:環境管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:66
中文關鍵詞:養殖風險評估虱目魚地下水
外文關鍵詞:groundwaterriskmilkfishaquaculturecopperzincArsenic
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1026
  • 評分評分:
  • 下載下載:153
  • 收藏至我的研究室書目清單書目收藏:1
  本論文利用問卷及風險評估模式,針對台灣西南沿海四鄉鎮(嘉義縣布袋、義竹及台南縣北門、學甲)進行調查,探討因食用地下水養殖虱目魚而暴露於砷、鋅、銅污染之危害風險。結果顯示,當地養殖池水之砷(63.9 ± 2.51 mg L-1)、銅(77.1 ± 3.69 mg L-1)濃度皆超過台灣二級水產用水標準(砷:50 mg L-1、銅:30 mg L-1); 鋅濃度(10.9 ± 4.72 mg L-1)則低於標準值(500 mg L-1)。虱目魚體對砷、鋅、銅之生物濃縮因子(BCF)值分別為 12.51 ± 4.95、4479.68 ± 1399.66、30.50 ± 12.76,顯示虱目魚對於周圍水體中的砷、鋅、銅污染質具有累積能力,其中對鋅的吸收、累積能力與耐受性均高於砷、銅。食用地下水養殖虱目魚之標的致癌風險(TR)為 1.05×10-3 ± 9.91×10-4,大於可接受風險標準值 1×10-6約 1000 倍。砷、鋅、銅之非致癌風險標的危害商數(THQ)中,只有砷超過標準值 1。砷、鋅、銅的危害指數(HI)為5.91 ± 5.38,高於標準值5倍以上,其危害性主要源自於砷的THQ值 5.45 ± 5.14。根據理論值求出之虱目魚安全攝取量為 0.32 ± 0.17 g d-1,但當地居民之食用量卻高達 179.32 ± 233.51 g d-1,表示居民若以此攝取量食用當地以地下水養殖之虱目魚,會有高度的致癌和非致癌風險。養殖虱目魚體砷之風險基準濃度(RBCf)為 7.19×10-4 ± 2.62×10-4 mg g-1,但實際採得之虱目魚砷含量卻高過此標準。養殖池水之風險基準砷濃度(RBCw)為 0.08 ± 0.03 mg L-1,而養殖池水之實際砷濃度 63.9 ± 2.51 mg L-1明顯過高。因此若以此池水養殖虱目魚,而後又供居民食用,會使民眾暴露於致癌和非致癌性疾病的風險中。
  The risk associated with intake of arsenic(As), zinc(Zn)and copper(Cu)of cultured milkfish(Chanos chanos)using groundwater from southwest coast in Taiwan were studied, based on the questionnaire and the risk assessment models. The resulting values of As(63.9 ± 2.51 mg L-1)and Cu(77.1 ± 3.69 mg L-1)in pond water show that the concentrations of these two pollutants are higher than the standards in Taiwan(As: 50 mg L-1 and Cu: 30 mg L-1, respectively), while the Zn concentration(10.9 ± 4.72 mg L-1)is lower than the standard(500 mg L-1). The bioconcentration factor(BCF)values of As, Zn and Cu in milkfish(12.51 ± 4.95, 4479.68 ± 1399.66 and 30.50 ± 12.76, respectively)show that the milkfish can accumulate these pollutants from the ambient water. The target cancer risk(TR)of consuming milkfish is 1.05×10-3 ± 9.91×10-4, which is higher than the acceptable risk 1×10-6. Among the three pollutants, only the value of the target hazard quotient(THQ)of As exceeds the safe value 1 for non-carcinogenic risk. The hazard index(HI)5.91 ± 5.38 is 5 times higher than the standard, mainly contributed by the THQ value 5.45 ± 5.14 of As. The acceptable consumption of the milkfish is 0.32 ± 0.17 g d-1, which is lower than the actual milkfish consumption 179.32 ± 233.51 g d-1. Therefore, the consumption of cultured milkfish using groundwater may cause carcinogenic and non-carcinogenic risks. The risk-based concentration(RBCf)of As in milkfish is 7.19×10-4 ± 2.62×10-4 mg g-1, which is lower than that in milkfish we measured in pond. Arsenic concentrations(63.9 ± 2.51 mg L-1)in pond water are higher than the risk-based concentration(RBCw)for As(0.08 ± 0.03 mg g-1). Ingestion of these contaminated milkfish could result in exposure of As, Zn and Cu in inhabitants and lead to adverse health effects caused by As.
第壹章 緒論 1
 
第貳章 文獻回顧 3
第一節 台灣虱目魚養殖概況 3
第二節 砷 4
一、特性 4
二、接觸源及危害 5
三、管制標準 5
第三節 鋅 6
一、特性 6
二、接觸源及危害 6
三、管制標準 6
第四節 銅 7
一、特性 7
二、接觸源和危害 7
三、管制標準 7
第五節 風險評估 8
一、風險評估定義 8
二、風險評估方法 8
 
第參章 材料與方法 12
第一節 研究架構 12
第二節 研究方法與步驟 13
一、問卷調查 13
二、野外調查 13
三、生物濃縮因子計算 14
四、風險評估 15
 
第肆章 結果 19
第一節 問卷調查 19
一、虱目魚食用情形 19
二、虱目魚養殖狀況 20
第二節 野外調查 20
一、虱目魚養殖池水之砷、鋅、銅濃度 20
二、虱目魚魚體砷、鋅、銅含量 21
第三節 生物濃縮因子(BCF) 22
一、虱目魚體累積砷的 BCF 值 22
二、虱目魚體累積鋅的 BCF 值 22
三、虱目魚體累積銅的 BCF 值 23
第四節 風險評估 23
一、標的致癌風險(TR) 23
二、標的危害商數(THQ) 24
三、危害指數(HI) 27
四、每日安全攝取量 27
五、風險基準濃度(RBC) 28
 
第伍章 討論 29
 
第陸章 結論與建議 33
第一節 結論 33
第二節 檢討與建議 34
 
參考文獻 35
附錄-問卷調查格式 65
一、中文文獻
 
台南縣統計要覽,2007,http://web1.tainan.gov.tw/bas/CP/11229/view-1.aspx
 
何昌運,2001,「台灣西部河川河口及西南海域重金屬分布」,中國文化大學應用化學研究所碩士論文。
 
吳春吉,2006,「竹科放流水中銅及砷來源追蹤分析及其對香山海域養殖區牡蠣影響之探討」,國立中央大學環境工程研究所碩士論文。
 
呂斯文,2001,「食品衛生檢驗及動植物檢疫措施與風險分析」,農政與農情,Vol:107。
 
沈林琥,2001,「生理為基礎之藥理動力及動態模式研析台灣烏腳病地區養殖魚類砷累積」,國立台灣大學農業工程學研究所博士論文。
 
林欣儀,2003,「台灣西南沿海烏腳病疫區養殖虱目魚之砷含量風險評估」,南華大學環境管理所碩士論文。
 
施伶穎,2001,「環境污染與健康風險之網路教育 – 以重金屬與水產食品為例」,台北醫學院公共衛生學研究所碩士論文。
 
洪秀裡,2007,「臺灣近海牡蠣水產養殖污染法制管理之研究」,國立臺灣海洋大學海洋法律研究所碩士論文。
 
胡興華,2004,「台灣的養殖漁業」,台北:遠足文化事業股份有限公司,p. 158-159。
 
張淑雲,2006,「將軍溪水生生態風險評估」,國立高雄師範大學生物科技系碩士論文。
 
郭自強,1998,「食用水產品中多氯聯苯與金屬之標的危害商數及潛在終生致癌風險評估」,台北醫學院公共衛生學研究所碩士論文。
 
陳文樹,2006,「虱目魚的撈捕與養殖」,漁業推廣月刊,行政院農委會漁業署,234: 49-51。
 
黃詠愷,2002,「烏腳病盛行地區養殖魚貝類砷物種分析研究」,台北醫學大學公共衛生研究所碩士論文。
 
楊喜男、王漢泉、劉鎮山、王世冠、彭瑞華、郭季華、楊禮源、李俊宏、徐美榕,2002,「台灣河川水體、底泥及生物監測分析研究」,行政院環保署環境檢驗所調查報告。
 
楊瑩文,2006,「臺灣嘉南平原西南沿海烏腳病地區地下水砷之氧化還原反應」,國立成功大學地球科學研究所碩士論文。
 
經濟部水利署,2004,「臺灣地區地下水觀測網水質常態監測與調查分析」,經濟部水利署。
 
詹長權,2002,「健康風險評估指引」,行政院衛生署國民健康局,92pp.。
 
農委會,2005,「94 年糧食供需年報」,行政院農業委員會。
 
嘉義縣統計要覽,2007,
http://www.cyhg.gov.tw/accounting/chinese/CP.aspx?s=320&n=10582#04
 
漁業署,2007,「行政院農業委員會漁業署 96 年漁業統計年報」,行政院農業委員會漁業署。
 
鄭旭惠,2003,「台灣西南沿海地區地下水養殖虱目魚之砷累積研究」,南華大學環境管理研究所碩士論文。
 
鄭佳慧,2005,「台灣地區養殖池重金屬元素之研究」,國立台灣海洋大學海洋環境資訊系碩士論文。
 
環保署,2009,「環境水質監測年報 97 年 1月-12月」,行政院環境保護署。
 
薛光展,2007,「嘉南地區地下水含砷濃度對稻米含砷量之風險評估」,國立成功大學資源工程學系碩士論文。
 
韓柏檉,1999,「台灣地區海產中污染質與健康風險評估初探」,生命科學簡訊,13: 10-14。
 
二、英文文獻
 
Abernathy, C.O., Thomas, D.J., Calderon, R.L., (2003), “Health effects and risk assessment of arsenic”., J. Nutr. 133: 1536-1538.
 
Argos, M., Parvez, F., Chen, Y., Hussain, A.Z.M.F., Momotaj, H., Howe, G.R., Graziano, J.H., Hsan, H.A., (2007), “Socioeconomic status and risk for arsenic-related skin lesions in Bangladesh”., Am. J. Public Health 97:825-831.
 
ATSDR, (2005), “ToxFAQs™ for Zinc”., U.S. Department of Health and Human Services, Public Health Service. Available from: http://www.atsdr.cdc.gov/tfacts60.pdf.
 
ATSDR, (2000), “Toxicological profile for arsenic”, U.S. Department of Health and Human Services, Public Health Service.
 
ATSDR, (2001), “Interaction profile for lead, manganese, zinc, and copper”., U.S. Department of Health and Human Services.
 
ATSDR, (2004), “Toxicological profile for copper”., U.S. Department of Health and Human Services, Public Health Service.
 
ATSDR, (2005), “Toxicological profile for zinc”., U.S. Department of Health and Human Services, Public Health Service.
 
Baldwin, D.H., Sandahl, J.F., Labenia, J.S., Scholz, N.L., (2003), “Sublethal effects of copper on coho salmon: impacts on non-overlapping receptor pathways in the peripheral olfactory nervous system”., Environ. Toxicol. Chem. 22(10): 2266-2274.
 
Beaumont, M.W., Butler, P.J., Taylor, E.W., (2000), “Exposure of brown trout, Salmo trutta, to a sub-lethal concentration of copper in soft acidic water: effects upon muscle metabolism and membrane”., J. Exp. Biol. 206:153-162.
 
Betzer, S.B., Yevich, P.P., (1975), “Copper toxicity in Busycon canaliculatum L.”., Biol. Bull. 148: 16-25.
 
Carbonell, G.,, Tarazona, V., (1994), “Toxicokinetics of copper in rainbow trout (Oncorhynchus mykiss)”., Aquat. Toxicol. 29: 213-221.
 
Carpené, E.,Cattani, O., Serrazanetti, G.P.,Fedrizzi, G., Coptesi, P., (1990), “Zinc and copper in fish from natural waters and rearing ponds in Northern Italy”., J. Fish Biol. 37: 293-299.
 
Chen, C.J., Hsu, L.I., Tesng, C.H., Hsueh, Y.M., Chiou, H.Y., (1999), “Emerging epidemics of arseniasis in Asia”. In: Chappell, W.R., Abernathy, C.O., Calderon, R.L. (Eds.), Arsenic exposure and health effects, Elsevier, Amsterdam, p. 113-121.
 
Klaassen, C.D., (1996), “Casarett and Doull’s toxicology: the basic science of poisons”., McGraw-Hill Companies Inc., New York, p. 691-736.
 
Eisler, R., (2000), “Handbook of chemical risk assessment: health hazards to humans, plants and animals I: metals. Lewis Publishers, New York.
 
FAO, (2003), “The state of world fisheries and aquaculture 2003”., Fisheries and Aquaculture Department.
 
FAO, (2004), “The state of world fisheries and aquaculture 2004”., Fisheries and Aquaculture Department.
 
FAO, (2006), “The state of world fisheries and aquaculture 2006”., Fisheries and Aquaculture Department.
 
Ferguson, J.F., Gavis, J., (1972), “A review of the arsenic cycle in natural waters”., Water Res. 6: 1259-1274
 
Gibson, R., (1994), “Zinc nutrition in developing countries”., Nutr. Res. Rev. 7: 151-73.
 
Gioda, C.R., Lissner, L.A., Pretto, A., da Rocha, J.B.T., Schetinger, M.R.C., Neto, J.R., Morsch, V.M., Loro, V.L., (2007), “Exposure to sublethal concentrations of Zn(II) and Cu(II) changes biochemical parameters in Leporinus obtusidens”., Chemosphere 69:170-175.
 
Golden, M.H, Jackson, A.A, Golden, B.E., (1977), “Effect of zinc on thymus of recently malnourished children”., Lancet 2: 1057-1059.
 
Golden, M.H., Harland, P.S., Golden, B.E., Jackson, A.A., (1978), “Zinc and immunocompetence in protein-energy malnutrition”., Lancet 1: 1226-1228.
 
Gratt, L.B.,(1996), “Air toxic risk assessment and management: public health risk from normal operations”. Jonh Wiley and Sons Inc.
 
Hall, W.S, Bushong, S.J, Hall, L.W., Jr., Lenkevich, M.S., Pinkey, A.E., (1988), “Monitoring dissolved copper concentrations in Chesapeake Bay”., Environ. Monitor. Assess. 11: 33-42.
 
Han, B.C., Jeng, W.L., Hang, T.C., Wen, M.Y., (1996), “Relationship between copper speciation in sediments and bioaccumulation by marine bivalves of Taiwan”., Environ. Poll. 91: 35-39.
 
Han, B.C., Jeng, W.L., Chen, R.Y., Fang, G.T., Hung, T.C., Tseng, R.J. (1998), “Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan”. Arch. Environ. Contam. Toxicol., 35: 711-720.
 
Hellman, N.E., Gitlin, J.D., (2002), “Ceruloplasmin metabolism and function”. Ann. Rev. Nutr. 22: 439-458.
 
Ho, E., (2004), “Zinc deficiency, DNA damage and cancer risk”., J. Nutr. Biochem. 15: 572-578.
 
Hodson, P.V., (1988), “The effect of metal metabolism on uptake, disposition and toxicity in fish”., Aquat. Toxicol.11: 3-18.
 
Hogstrand, C., Wood, C. M., (1996), “The physiology and toxicology of zinc in fish”., In: Taylor, E.W. (Ed.), Toxicology of environmental pollution: physiological, molecular and cellular approaches, Society for Experimental Biology Seminar Series, Cambridge: Cambridge University Press.
 
Hung, T.C., Meng, P.J., Han, B.C., Chuang, A., Huang, C.C., (2001), “Trace metals in different species of mollusca, water and sediments from Taiwan coastal area”., Chemosphere 44: 833-841.
 
IARC, (2003), Arsenic and arsenic compounds (Group 1). In: IARC monographs on the evaluation of the carcinogenic risks to humans. Supplement 7, International arctic reserch center, Available from: http://www.inchem.org/documents/iarc/suppl7/arsenic.html.
 
IPCS, (2001), “Environmental health criteria on arsenic and arsenic compounds”., Environmental Health Criteria Series, No. 224. Arsenic and arsenic compounds, second, WHO, p.521.
 
Liao, C.M., Jou, L.J., Chen, B.C., (2005), “Risk-based approach to appraise valve closure in the clam Corbicula fluminea in response to waterborne metals”., Environ. Pollut. 135: 41-52.
 
Lin, M.C., Liao, C.M., (1999), “Zn (II) accumulation in the soft tissue and shell of abalone Haliotic diversicolor supertexta via the alga Gracilaria tenuistipitata var. liui and the ambient water”., Aquaculture 178: 89-101.
 
Lin, M.C., Liao, C.M., Chen, Y.C., (2009), “Shrimp shell as a potential sorbent for removal of arsenic from aqueous solution.”, Fish. Sci. 75(2): 425-434.
 
Lin, M.C., Liao, C.M., Liu, C.W., Singh, S., (2001), “Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from the blackfoot disease area in Taiwan”., Bull. Environ. Contamin. Toxicol. 67: 91-97.
 
Lin, M.C., Wu, W.C., Ou, J.C. (2005), “Bioconcentration of arsenic, zinc and copper in cultured milkfish from ponds using groundwater in the blackfoot disease area in Taiwan”., WSEAS Transactions on Environment and Development 1: 11-17.
 
Lin, M.C., (2009), “Risk assessment on mixture toxicity of arsenic, zinc and copper intake from consumption of milkfish, cultured using contaminated groundwater in southwest Taiwan”., Bull. Environ. Contamin. Toxicology (in press, DOI: 10.1007/s00128-009-9718-4).
 
Ling, M.P., Liao, C.M., (2007), “Risk characterization and exposure assessment in arseniasis-endemic areas of Taiwan ”., Environ. Int. 33: 98- 07.
 
Liu, J., Zheng, B.S., Aposhian, H.V., Zhou, Y.S., Chen, M.L., Zhang, A.H., Waalkes, M.P., (2002), “Ronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China”., Environ. Health Perspect. 110: 119-122.
 
Shuhaimi–Othmana, M., Pascoeb, D., (2007), “Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca”., Ecotoxicol. Environ. Safety. 66: 29-35.
 
Mareta, W., Sandstead, H.H., (2006), “Zinc requirements and the risks and benefits of zinc supplementation”., J. Trace Elem. Med. Biol. 20: 3-18.
 
Martinez, F.S., Tseng, M.C., Yeh, S.P., (2006), “Milkfish (Chanos chanos) culture: situations and trends”., J. Fish. Soc. Taiwan 33 (3): 229-224.
 
Mertz, W., (1981), “The essential trace elements”., Science 213: 1332-1338.
 
Morales, K.H., Ryan, L., Kuo, T.L., Wu, M.M., Chen, C.J., (2000), “Risk of internal cancers from arsenic in drinking water”., Environ. Health Perspect. 108: 655-661.
 
NAS, (1983), “Risk assessment in the federal government: management the process”., National Academy of Sciences.
 
Ng, J.C., Wang, J.P., Shraim A., (2003), “A global health problem caused by arsenic from natural sources”., Chemosphere 52: 1353-1359.
 
NHMRC, (2004), “National Water Quality Management Strategy-Australian drinking water guidelines”, National Health and Medical Research Council, Available from: http://www.nhmrc.gov.au/publications/synopses/eh19syn.htm.
 
NRC, (1983), “Rick assessment in the federal government: manageing the process”., National Academy Press. Washington, D.C.
 
Prasad, A.S., (1998), “Zinc and immunity”., Mol. Cell Biochem. 188: 63-9.
 
Schroeder, H.A., Nason, A.P., Tipton, I.H., Balassa, J.J., (1966), “Essential trace metals in man: copper”., J. Chronic Dis. 19: 1007-1034.
 
Sorensen, E.M.B., (1991), “Copper”., In: Sorensen, E.M.B. (Ed.), Metal Poisoning in Fish, CRC press, FL, USA, p. 235-284.
 
Sun, G., (2004), “Arsenic contamination and arsenicosis in China”., Toxicol. Appl. Pharmacol. 198(3): 268-271.
 
Taylor, L.N., McGeer, J.C., Wood, C.M., McDonald, D.G., (2000), “Physiological effects of chronic copper exposure to rainbow trout (Oncorhynchus mykiss) in hard and soft water: evaluation of chronic indicators”., Environ. Toxicol. Chem. 19: 2298-2308.
 
Thomas, D.J., (1994), “Arsenic toxicity in humans: research problems and prospects”., Environ. Geochem. Health 16: 107-111.
 
Tseng, W.P., (1977), “Effects and dose–response relationships of skin cancer and blackfoot disease with arsenic”., Environ. Health Perspect. 19: 109-119.
 
US EPA, (1986), “Guildelines for carcinogen risk assessment”., Washington, Dc. Federal Register ,United states environmental protection agency, 51:33992-34003.
 
US EPA, (2003), “US EPA region 3 risk-based concentration table: technical background information”., United states environmental protection agency, Available from: http://www.epa.gov/reg3hwmd/risk/human/index.htm.
 
US EPA, (2004), “Lean and copper rule: a quick reference guide”., United states environmental protection agency, Available from: http://www.epa.gov/safewater/lcrmr/pdfs/qrg_lcmr_2004.pdf.
 
US EPA, (2009a), “Human health risk assessment: regional screening level (RSL) table; fish”., United states environmental protection agency.
 
US EPA.,(2009b), “Risk-based concentration table, region 3”., United states environmental protection agency, Available from: http://www.epa.gov/reg3hwmd/risk/human/index.htm
 
Vallee, B.L., Falchuk, H., (1993), “The biochemical basis of zinc physiology”., Physiol. Rev. 73: 79-118.
 
Walsh, C.T., Sandstead, H.H., Prasad, A.S., Newberne, P.M., Fraker, P.J., (1994), ”Zinc: health effects and research priorities for the 1990s”., Environ. Health Perspect. 102(2): 5-46.
 
Wang, C.C., Hsueh C.W., Feng, N.H., (2004), “Zinc deficiency: a case report”., J. Intern. Med. Taiwan 15: 274-279.
 
WHO, (2001), “Environmental health criteria 221: Zinc”., World Health Organization, p. 360.
 
WHO, (2009), “Drinking water quality”., World Health Organization, Available from: http://www.who.int/water_sanitation_health/dwq/en/
 
Wiley, J., (1979), “The global copper cycle: copper in the environment”., In: Nriagu, J.O. (Ed.), Copper in the environment, part 1: ecological cycling, John Wiley and Sons, NY.
 
Wilson, R.W., Taylor, E.W., (1993), “The physiological responses of freshwater rainbow trout, Oncorhynchus mykiss, during acutely lethal copper exposure”., J. Comp. Physiol. 163 (B): 38-47.
 
Yu, W.H., Harvey, C.M., Harvey, C.F., (2003), “Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies”., Water Resour. Res. 39: 1146-63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top