跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智豪
研究生(外文):J.H. Chang
論文名稱:二節倒單擺系統之模糊順滑控制器設計
論文名稱(外文):Fuzzy Sliding Mode Controller Design of the Double Inverted Pendulum System
指導教授:陶金旺
指導教授(外文):C.W. Tao
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:111
中文關鍵詞:二節倒單擺-滑車系統模糊順滑控制動態平面控制切換控制適應性控制
外文關鍵詞:Adaptive MechanismSwitched ControlFuzzy Sliding Mode ControlDouble Pendulum And Cart System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
研究中,我們針對二節倒單擺-滑車系統提出適應性模糊切換擺盪與順滑控制器(AFSSSC)以及適應性模糊切換擺盪與動態平面控制器(AFSSDC)。其中所提出的AFSSSC和AFSSDC主要由模糊切換控制器(FSC)、適應性模糊單擺擺盪控器(FSUC)、適應性混合型模糊順滑控制器(HFSC)和動態平面控制器(DSC)所組成。為了適應性混合型模糊順滑控制器(HFSC)的設計將系統解偶成二節單擺子系統與滑車子系統之時變非精確性部分。然而,研究中也引入了適應性控制學習模糊輸出之單值參數。而模糊切換控制器(FSC)可以根據切換法則,在適應性模糊單擺擺盪控器(FSUC)、適應性混合型模糊順滑控制器(HFSC)和動態平面控制器(DSC)進行切換。經由公式的推導適應性混合型模糊順滑控制器(HFSC)和動態平面控制器(DSC)可以保證被穩定。且經由模擬的結果AFSSSC以及AFSSDC可以使得二節單擺順利甩上且滑車可以被牽引至原點。
In this research, we propose adaptive fuzzy switched swing-up and sliding controller (AFSSSC), adaptive fuzzy switched swing-up and dynamic controller (AFSSDC) for the swing-up and position controls of a double pendulum and cart system. The proposed AFSSSC and AFSSDC consist of a fuzzy switching controller (FSC), an adaptive fuzzy swing-up controller (FSUC), an adaptive hybrid-fuzzy-sliding controller (HFSC), and a dynamic-surface controller (DSC). To simplify the design of the adaptive hybrid-fuzzy-sliding controller, the double pendulum and cart system is reformulated as a double pendulum subsystem and a cart subsystem with matched time-varying uncertainties. Also, an adaptive mechanism is provided to learn the parameters of the output fuzzy sets for the adaptive hybrid-fuzzy-sliding controller (HFSC). The fuzzy switching controller (FSC) is designed to smoothly switch the adaptive fuzzy swing-up controller (FSUC), the adaptive hybrid-fuzzy-sliding controller (HFSC), and dynamic-surface controller (DSC). Moreover, the sliding mode and stability of the fuzzy sliding control systems are guaranteed. Also, the dynamic surface and stability of the dynamic surface control systems are guaranteed. Simulation results are included to illustrate the effectiveness of the AFSSSC and AFSSDC.
誌 謝...........................................I
摘 要..........................................II
Abstract.......................................III
目 錄..........................................IV
表格索引.......................................VII
圖片索引......................................VIII
第一章 緒 論...................................1
1-1 啟發動機與研究目的..........................1
1-2 文獻回顧....................................3
1-3 研究步驟....................................4
1-4 論文貢獻....................................5
1-5 文章架構....................................6
第二章 系統動態分析.............................8
2-1 二節倒單擺-滑車系統之描述...................8
2-2 系統之數學模型.............................11
2-3 研究問題之探討.............................13
第三章 控制原理與架構..........................14
3-1 模糊控制理論...............................14
3-1-1 模糊理論之簡介...........................14
3-1-2 模糊集合之運算...........................14
3-1-3 模糊邏輯控制之架構.......................16
3-2 順滑模式控制理論...........................22
3-2-1 順滑模式之原理...........................22
3-3 動態平面控制理論...........................25
3-4 LMS適應性控制..............................29
第四章 適應性混合型模糊順滑控制................31
4-1 解偶之二節倒單擺-滑車系統..................31
4-2 適應性混合型模糊順滑控制器.................42
4-3 控制系統之穩定性分析.......................48
4-4 控制系統之模擬.............................53
4-4-1 參數設計.................................53
4-4-2 模擬結果.................................55
4-4-3 性能分析.................................58
第五章 動態平面控制............................59
5-1 動態平面控制器.............................59
5-2 控制系統之穩定性分析.......................64
5-3 控制系統之模擬.............................66
5-3-1 參數設計.................................66
5-3-2 模擬結果.................................66
5-3-3 性能分析.................................69
第六章 適應性模糊擺盪控制與模糊切換控制........71
6-1 適應性模糊單擺擺盪控制器(FSUC).............71
6-2 模糊切換控制器(FSC)........................74
6-3 AFSSSC控制系統之模擬.......................78
6-3-1 參數設計.................................78
6-3-2 模擬結果.................................80
6-3-3 性能分析.................................83
6-4 AFSSDC控制系統之模擬.......................84
6-4-1 參數設計.................................84
6-4-2 模擬結果.................................85
6-4-3 性能分析.................................88
第七章 結 論...................................90
7-1 控制器之性能評比...........................90
7-2 總結.......................................91
7-3 未來展望...................................92
參考文獻........................................94
[1] L. A. Zedah, ”Fuzzy Sets,” Information and Control, Vol. 8, No. 3, pp. 338-353, 1965.
[2] Rubi J., Rubio A., and Avello A., “Swing-up control problem for a self-erecting double inverted pendulum,” IEE Proc.-Control Theory Appl, Vol. 149, No. 2, pp. 169–165, March 2002.
[3] M. Takahashi, T. Narukawa, and K. Yoshida, “Intelligent stabilization control to an arbitrary equilibrium point of double pendulum,” American Control Conference, 2004. Proceedings of the 2004, Vol. 6, pp. 5772-5777, July 2004.
[4] K. Tanaka and M. Sugeno, ”Stability Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets Syst., Vol. 45, pp. 135-156, 1995.
[5] Lei S., Langari R. “Synthesis and Approximation of Fuzzy Logic Controllers for Nonlinear Systems,” International Journal of Fuzzy Systems, Vol. 5, No. 2, June 2003.
[6] Muskinja N. and Boris Tovornik, “Swinging up and Stabilization of a Real Inverted Pendulum.” IEEE Transactions on Industrial Electronics, Vol. 53, No. 2, pp. 631-639, April 2006.
[7] H. O. Wang, K. Tanaka, and M. F. Griffin, “An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues,” IEEE Trans. Fuzzy Syst., Vol. 4, No. 2, pp. 14-23, 2004.
[8] S. Kawaji and T. Maeda, “Fuzzy Servo Control System for an Inverted Pendulum,” Proceedings Of IFES91, Vol. 2, pp. 812-823, 1991.
[9] Jianqiang YI, Naoyoshi YUBAZAKI, and Kaoru HIROA, “Systematically constructing stabilization fuzzy controllers for single and double pendulum systems,” IEEE International Fuzzy Systems Conference Proceedings, Vol. 1, pp. 263-268, August 7-10, 2000, Seoul, Korea.
[10] Jianqiang YI, Naoyoshi YUBAZAKI, and Kaoru HIROA, “Upswing and stabilization control of inverted pendulum and cart system by the SIRMs dynamically connected fuzzy inference model, ” IEEE International Fuzzy Systems Conference Proceedings, Vol. 1, pp. 400-405, August 22-25, 1999, Seoul, Korea.
[11] Jianqiang YI, Naoyoshi YUBAZAKI, and Kaoru HIROA, “Stabilization Fuzzy Control of Parallel-Type Double Inverted Pendulum System,” IEEE International Fuzzy Systems Conference Proceedings, Vol. 2, pp. 817-822, May 7-10, 2000, Seoul, Korea.
[12] Chin-Gook Lhee, Jae-Sam Park, Hyun-Sik Ahn, Do-Hyun Kim, “Sliding mode-like fuzzy logic control with self-tuning the dead zone parameters,” IEEE Trans. on Fuzzy Systems, No. 2, Vol. 9, pp. 343-348, Apr. 2001.
[13] Chin-Min Lin and Yi-Jen Mon, “Decoupling Control by Hierarchical Fuzzy Silding-Mode Controller,” IEEE Transactions on Control System Techmology, Vol. 13, No. 4, pp. 593-598, July 2005.
[14] M. Dotoli, B. Maione, D. Naso, and B. Turchiano, “Fuzzy Sliding Mode Control for Inverted Pendulum Swing-up with Restricted Travel,” IEEE International Fuzzy Systems Conference, Vol. 3, pp. 753-756, Dec. 2-5, 2001.
[15] Z. Man and X. H. Yu, “Terminal sliding mode control of MIMO linear systems,” IEEE Trans. Circuit Syst. I, Vol. 44, pp. 1065-1070, Nov. 1997.
[16] Yang Y. and Zhou C., “Adaptive fuzzy H∞ stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach,” IEEE Transactions on Fuzzy Systems, Vol. 13, No. 1, pp. 104-114, Feb. 2005.
[17] Zou A.M., Hou Z.G., and Tan M., “Adaptive Control of a Class of Nonlinear Pure-Feedback Systems Using Fuzzy Backstepping Approach,” IEEE Transactions on Fuzzy Systems, Vol. 16, No. 4, pp. 886-897, Aug. 2008.
[18] Swaroop D., Hedrick J.K., Yip P.P., and Gerdes, J.C., “Dynamic surface control for a class of nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 45, No. 10, pp. 1893-1899, Oct. 2000.
[19] Li RenHou and Zhang Yi, “Fuzzy logic controller based on genetic algorithms,” Fuzzy Sets and Systems., Vol. 83, No. 1, pp. 1–10, October 1996.
[20] F. Cheng, G.. Zhong, Y. Li, and Z. Xu, “Fuzzy control of a double-inverted pendulum.” Fuzzy Sets and Systems, Vol. 79, No. 3, pp. 315-321, May 1996.
[21] J. C. Lo and Y. H. Kuo, “Decomposed fuzzy sliding-mode control,” IEEE Trans. on Fuzzy Systems, Vol. 6, No. 3, pp. 426-435, Aug. 1998.
[22] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. Ind. Electron., vol. 40, pp. 2–21, Feb. 1993.
[23] C. W. Tao, Mei-Lang Chan, and Tsu-Tian Lee, “Adaptive Fuzzy Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties,” IEEE Transactions on Systems, Vol. 33, No. 2, April, 2003.
[24] C. W. Tao, J. S. Taur, and Mei-Lang Chan, “Adaptive Fuzzy Terminal Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties,” IEEE Trans. Systems Man Cybernet., Vol. 34, No. 1, February 2004.
[25] Yoo S.J., Park J.B., and Choi Y.H., “Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks,” IEEE Transactions on Systems Man, and Cybernetics, Part B, Vol. 36, No. 6, pp. 1342-1355, Dec. 2006.
[26] D. Qian, J. Yi, D. Zhao, and Y. Hao, “Hierarchical Sliding Mode Control for Series Double Inverted Pendulums System,” Proc. of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4977-4982, October 2006.
[27] W. Zhong and H. Rock, “Energy and passivity based control of the double inverted pendulum on a cart,” Proceedings of the 2001 IEEE International Conference on Control Applications, 2001. (CCA '01), pp. 896-961, Sept., 2001.
[28] Geun-Taek Ryu, Dong-Won Kim, Jung-Go Choe; Dae-Sung Kim, and Hyeon-Deok Bae, “Adaptive System Identification Using Fuzzy Inference Based LMS Algorithm,” Proceedings of ICSP , Vol. 1, Oct. 14-18, pp. 587-590, 1996.
[29] Jianmin Sun, Qingmei Yang, Yu Dong, and Yi Zhang, “LMS Adaptive Fuzzy Control for Vehicle Active Suspension System,” Proceedings of ICSP , Vol. 2, pp. 1372-1377, Oct. 12-15, 2003.
[30] Chi-Hsu Wang, Tsung-Chih Lin, Tsu-Tian Lee, and Han-Leih Liu, “Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems,” IEEE Transactions on Systems, Vol. 32, NO. 5, October 2002.
[31] L. X. Wang and J. M. Mendel, ”Generating fuzzy rules by learning from examples,” IEEE Trans. Syst., Man, Cybern., Vol. 22, pp. 1414-1427, 1992.
[32] W. M. Haddad, T. Hayakawa, and V. Chellaboina, ”Robust Adaptive-Control for Nonlinear Uncertain Systems,” AUTOMATICA, Vol. 39, No. 3, pp. 551-556, March 2003.
[33] J. C. Shen, “Designing stabilising controllers and observers for uncertain linear systems with time varying delay,” Proc. Inst. Elect. Eng D, Vol. 144, No. 4, pp. 331–333, July 1997.
[34] Dian-Tong LIU, Wei-Ping GUO, Jian-Qiang YI, and Dong-Bin ZHAO, “Double-Pendulum-Type Overhead Crane Dynamics and its Adaptive Sliding Mode Fuzzy Control,” Proceedings of the Third International Conference on Machine Leaning and Cybernetics, Vol. 1, pp. 423-428, Aug. 26-29, 2004.
[35] 王文俊,”認識 Fuzzy-第二版”,全華科技圖書出版社,Oct. 1997。
[36] 陳永平,”Variable Structrue System;可變結構控制設計”,全華科技圖書出版社,2000。
[37] 趙清峰,”進階自動控制設計-使用 MATLAB 程式語言”,全華科技圖書出版 社,2000。
[38] 余克維,”控制系統分析與設計-使用 Matlab”,新文京開發出版,Jun. 2004。
[39] 張智星,”MATLAB-程式設計與應用”,清蔚科技出版,2004。
[40] 孫宗瀛,楊英魁,”Fuzzy 控制理論 實作與應用”,全華科技圖書出版社,1994。
[41] 洪維恩,”Matlab 7.0”,旗標出版社,2005。
[42] 劉金琨,”滑模變結構控制 Matlab 仿真”,中國清華大學出版社,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top