(3.210.184.142) 您好!臺灣時間:2021/05/16 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳綱斌
研究生(外文):Gang-Bin Chen
論文名稱:不同基板之陽極處理比較及其應用
論文名稱(外文):The Comparison of Manufacturing Anodic Aluminum Oxide in Difference Substrates and its Applications
指導教授:賴富德
指導教授(外文):Fu-Der Lai
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:奈米柱陽極氧化鋁微結構
外文關鍵詞:Anodic Aluminum Oxidemicrostructurenanorod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以陽極氧化鋁模板(Anodic Aluminum Oxide,AAO)的製作比較為主軸,之後並應用此模板製作微結構及成長釕奈米柱,共分成三部分。論文第一部分將比較用電子槍蒸鍍(E-gun)、濺鍍(sputter)方式製作的鍍鋁晶圓、和市售鏡面純鋁片進行陽極處理時,適合的參數設定。實驗結果顯示,以E-gun、sputter方式製作之試片、膜厚2μm為例,草酸兩次陽極處理反應時間宜控制在各30分鐘以內;而鋁片厚度與所鍍鋁膜相比,約在百倍的差距,所以可以將草酸陽極處理反應時
間拉長至1小時以上,以獲得較規則的結構。
論文的第二部分,先以COMSOL Multiphysics軟體模擬微結構在菲涅爾透鏡表面對光學抗反射率之影響,再將第一部分的結果為依據,改變製程步驟來達成我們所模擬的微結構,並製作在與菲涅爾透鏡模具相同性質的基板上。之後利用聚二甲基矽氧烷(polydimethylsiloxane, PDMS)測試,證實可以把微結構翻模出來,故
可供後續製作微結構於菲涅爾透鏡表面的參考。
第三部分則是用AAO模板製作釕奈米柱,我們以低成本的自耦變壓器作為交
流電鍍時的電源供應器,並成功生長出長度約1μm的釕奈米柱。
This study is to manufacture anodic aluminum oxide (AAO) with different substrate, and then to apply this AAO to fabricate microstructure and Ru nanorod, which is separated to three parts. Therefore the paper''s first part will compare with three substrates of using electron gun evaporation (E-gun) and sputter to manufacture the aluminum film on silicon wafers, mirror-surfaced pure aluminum sheet. After anodic treatment, find out the suitable fabricating parameters. The experiment results showed that the time should be controlled within 30 minutes by using the samples manufactured by E-gun and sputter to proceed the ethanedioic acid anodic treatment reaction; the thickness of aluminum sheet is about one hundred times more then aluminum-films, so it may elongate the ethanedioic acid anodic treatment reaction time to over 1 hour to obtain the regular structure.
The paper’s second part is using the COMSOL Multiphysics software to simulate the effect of anti-reflection of the microstructure on the surface of Fresnel lens. Then the first part of result as the basis, changing the processed to achieves the microstructure which we simulated. Using the substrate the same prosperities with Fresnel lens mold to manufacture the microstructure. Afterward using the gathering polydimethylsiloxane (PDMS) to test actually, it may copy the microstructure on the mold.
The third part is that fabricating Ru nanorod by AAO structure. We used the alternating electroplating by low cost''s auto-converter power supply, and successfully grew Ru nanorod with length approximately 1μm.
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 論文架構 2
第二章 文獻回顧 3
2-1 多孔陽極氧化鋁(ANODIC ALUMINUM OXIDE,AAO) 3
2-1-1 AAO結構簡介 4
2-1-2 AAO的形成機制 8
2-1-3 增加AAO的孔洞規則性 11
2-2 菲涅爾透鏡(FRESEL LENS) 16
2-2-1 發展歷史 16
2-2-2 傳統菲涅爾透鏡設計原理及特色 16
2-2-3 菲涅爾透鏡應用實例:聚光型太陽能電池 18
2-3 有限元素分析法(FINITE ELEMENT MODELING LABORATORY) 20
2-3-1 有限元素分析法簡介[41] 20
2-3-2 有限元素法模擬流程 21
2-4 奈米柱(NANOROD)的成長 24
2-4-1 電鍍基本原理[42] 24
2-4-2 直流電鍍(Direct Current Electro-Deposition) [43] 25
2-4-3 直流脈衝電鍍(DC Pulsed Electro-Deposition) 25
2-4-4 交流電鍍(Alternating Current Electro-Deposition)[45] 26
2-5 AAO基板製備 27
2-5-1 物理氣相沈積(physical vapor deposition) 27
2-5-2 電子槍蒸鍍(electron-gun evaporation)系統[47] 27
2-5-3 濺鍍系統(Sputter) 28
2-6 量測儀器介紹 29
2-6-1 掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM) 29
2-6-2 X光繞射儀(X-ray Diffraction, XRD) 29
2-6-3環境掃描式電子顯微鏡(Environmental SEM, ESEM) 30
第三章 實驗設計 32
3-1多孔氧化鋁在不同基板的製備 34
3-1-1 實驗環境設備 34
3-1-2 實驗步驟 36
3-1-3 試片製備 36
3-1-4 變數設定 38
3-2 微結構製程 40
3-2-1 以Comsol Multiphysics軟體模擬微結構 40
3-2-2 以AAO製程製作微結構 41
3-2-3 以鍍鋁無氧銅片製作微結構 41
3-3 RU奈米柱製程 42
3-3-1 實驗環境設備 42
3-3-2 變數設定 43
3-4 檢測機台與參數設置 44
3-4-1 場發射型掃描式電子顯微鏡(附能量分散分析儀EDS) 44
3-4-2 環境掃描式電子顯微鏡 44
3-4-3 X光繞射儀 45
第四章 結果與討論 46
4-1 不同基板之陽極處理比較 46
4-1-1 試片原始表面結構 46
4-1-2 第一組參數實驗結果 48
4-1-3 1.8wt%鉻酸和6wt%磷酸的混合溶液蝕刻時間的影響 54
4-1-4 陽極處理時間的影響 55
4-1-5 表面平整度對陽極處理孔洞規則性的影響 57
4-1-6 以定電流進行鋁片第二次陽極處理 58
4-2微結構模擬與製備 59
4-2-1 Comsol Multiphysics軟體模擬微結構 59
4-2-2 以sputter鍍鋁wafer製作微結構 59
4-2-3 以鍍鋁無氧銅片製作微結構及PDMS翻膜 61
4-3成長釕(RU)奈米柱 64
4-3-1 以直流定電壓/直流定電流方式成長釕奈米柱 64
4-3-2 以交流電鍍成長釕奈米柱 65
4-3-3 EDS成分分析 66
4-3-4 XRD圖譜分析 67
第五章 結論與未來展望 68
5-1 結論 68
5-2 未來展望 69
參考文獻 70
[1] Chi-Chang Hu, Ming-Jue Liu, Kuo-Hsin Chang, Journal of Power Sources, 163 1126–1131, 2007.
[2] 黃世惠,氧化釕奈米桿的電化學觸媒應用,國立台灣科技大學化學工程所,碩士論文,2006。
[3] E. Hamada, R. Kaneko, J. Phys. D.: Appl. Phs. A. 53-56, 31, 1992.
[4] F. Keller, M. S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100, 411, 1953.
[5] G. E. Thompson, G. C. Wood, Nature 290, 230, 1981.
[6] T. H. Fang, S. L. Lin, D. M. Lu, Proceeding of Precision Machine and
Manufacturimg Technology, 2005.
[7] N. Itoh, K. Kato et al., Journal of Membrane Science 117, 189, 1996.
[8] W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube
field-emission electron source”, Science, 270, 1179, 1995.
[9] Z. Wang, Y. K. Su et al. Appl. Phys. A. 74563, 2002.
[10] Y. C. Sui, B. Z. Cui, et al. Thin Solid Films, 406, 64, 2002.
[11] D. Xu, D. Chen et al., Chem. Phys. Lett. 325, 340, 2000.
[12] L. Mengke, W. Chengwei et al., Chinese Science Bulletin, 46, 21, 2001.
[13] Y. Peng, H. L. Li et al., Materials Science and Engineering B. 77, 246, 2000.
[14] H. Xu, D. H. Qin et al., Materials Chemistry and Physics, 80, 524, 2003.
[15] W. Lee, H. I. Yoo et al., Chem. Commun. 29, 2530, 2001.
[16] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, J. Appl. Phys. vol. 84, pp. 6023–6026, 1998.
[17] D. Crouse, Yu-Hwa Lo, A. E. Miller and M. Crouse, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer, ”Appl. Phys. Lett. vol. 76, pp. 49–51, 2000.
[18] Yong lei, Weiping Cai, Gerhard Wild, Progress in Materials Science, 52, 465, 2007.
[19] Setoh, S. Miyata, A., Sci. Pap. Inst. Phys. Chem. Res., Tokyo, pp. 2772, 1932.
[20] J. P. O’Sullivan, G. C. Wood, Proc. R. Soc. Lond., Ser. A, 317, pp. 511, 1970.
[21] O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. vol. 72, pp. 1173–1175, 1998.
[22] Thamida, Sunil Kumar and Hsueh-Chia Chang, “Nanoscale pore formation dynamics during aluminum anodization” Chaos 12, 240, 2002.
[23] J. Siejka and C. Ortega, J. Electrochem. Soc. vol. 124, pp. 883, 1977.
[24] V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. vol. 25, pp. 1258, 1992.
[25] V. P. Parkhutik, Corros. Sci. 26, pp. 295, 1986.
[26] G. E. Thompson, R. C. Furneaux, and G. C. Wood, Nature, vol. 272, pp. 433, 1978.
[27] V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. vol. 25, pp. 1258, 1992.
[28] F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater. vol. 10, pp. 2470-2480, 1998.
[29] C. Y. Liu, A. Datta, and Y. L. Wanga, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. vol. 78, pp. 120-122, 2001.
[30] Hideki Masuda,Haruki Yamada, Masahiro Satoh, and Hidetaka Asoh,” Highly ordered nanochannel-array architecture in anodic alumina”, Appl. Phys. Lett. vol. 71 ,pp. 2770-2772, 1997.
[31] Hidetaka Asoh, Kazuyuki Nishio, Masashi Nakao, Toshiaki Tamamura, and Hideki Masudaa, “Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al”, J. Electrochem. Soc. vol. 148, pp. B152-B156, 2001.
[32] Hideki Masuda, Masato Yotsuya, Mari Asano, and Kazuyuki Nishio, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett. vol. 78, pp. 826-828, 2001.
[33] H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,” Jpn. J. Appl. Phys. Part 2 vol. 35, pp. L126-L129, 1996.
[34] Y. Kanamoria,K. Hane, H. Sai,H. Yugami,” 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask”, Appl. Phys. Lett. vol. 78, 2001.
[35] Y. Du et al., Appl. Phys. Lett. 20, 2951, 1999.
[36] Wenham SR, Green MA, Watt ME. Applied photovoltaics, Centre for Photovoltaic Devices and Systems, Sydney.p. 239, 1994.
[37] The Fresnel Lens , http://www.lanternroom.com/misc/freslens.htm
[38] 謝明良, Fresnel透鏡的回顧與應用,國立交通大學光電所,碩士論文,1993。
[39] Jing-Liang Chen, “Ray tracing of Fresnel systems,” Applied Optics, vol. 22, pp560-562, 1983.
[40] 黃錦煌、吳佐群,有限元素分析大師,高力圖書有限公司,2004。
[41] 黃文廣,探討金屬孔洞之聚焦效應的模擬與製作,國立高雄第一科技大學光電所,碩士論文,2007。
[42] 陳黼澤,鎳磷與鈷磷合金電鍍,國立台灣大學材料科學與工程學研究所,碩士論文,2005。
[43] Jian Qin, Josep Nogues, Maria Mikhaylova, Anna Roig, Juan S. Munoz, and Mamoun Muhammed, Chem. Mater, 17, 1829, 2005.
[44] Van Der Linden B, Terryn H and Vereechen J, J. Appl. Electrochem, 20, 798, 1990.
[45] K. H. Lee, H. Y. Lee, W. Y. Jeung, and W. Y. Lee, J. Appl. Phys. 91, 8513, 2002.
[46] F. Li, T. Wang, L. Ren, And J. Sun, J. Phys.: Condens. Matter, 16, 8053, 2004.
[47] 高健薰等,真空技術與應用,國科會精密儀器發展中心,2001。
[48] A.M. Huntz, ”Scale growth and stress development”, Materials Science and Technology , vol. 4, pp.1079-1088, 1988.
[49] W. Bruckner, and S. Baunack, “Stress and Oxidation in CuNi thin films”, Thin Solid Films, pp.316-321, 1999.
[50] W. H. Lee, S.T. Lin, C. H. Hu, “A Study on the Conductive Thin Film Manufacturing Process”, Journal of National Taipei University of Technology, 34(1), 11, 2001.
[51] 劉士僑,次微米結構對光學反射率影響之研究,國立高雄第一科技大學光電所,碩士論文,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊