1.林朝興、唐瑩荃,2005,應用RFM 模組與權重漸進探勘使用者最近習慣進行協力式推薦,2005年NCS全國計算機會議,崑山科技大學。
2.吳志宏,2004,以隱性回饋為基礎的自動化推薦機制,朝陽科技大學資訊管理研究所碩士論文。3.周寬怡,2003,以內容分析法獲取推薦系統中使用者profile之研究,國立成功大學資訊管理研究所碩士論文。
4.許耀文,2004,序列型樣快速探勘演算法,南台科技大學資訊管理研究所碩士論文。5.黃承龍、黃維良,2006,具有「隨時間變異的顧客購買興趣」預測能力之協同推薦系統,第十二屆資訊管理暨實務研討會,虎尾科技大學。
6.黃維良,2007,具有「隨時間變異的顧客購買興趣」預測能力之多階層協同式推薦系統,國立高雄第一科技大學碩士論文。7.張哲銘,2003,以使用者偏好分類為基礎之網際資源推薦系統,國立台灣大學資訊管理研究所碩士論文。8.Adomavicius, G., and Tuzhilin, A., “Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions” IEEE Transactions on Knowledge and Data Engineering, 2005, Vol. 17, No. 6, pp. 734-749.
9.Agrawal, R., and Srikant, R., “Mining sequential patterns” IEEE International Conference on Data Engineering, 2005, pp.3-14.
10.Agrawal, R., and Srikant, R., “Mining sequential patterns: generalizations and performance improvements” Proceedings of the 6th International Conference on Extending Database Technology (EDBT), March 1996, pp. 3–17.
11.Ayres, J., Flannick, J., Gehrke, J., Yiu, J., “Sequential PAttern mining using a bitmap representation” Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 2002, pp:429-435.
12.Balabanovic, M., and Shoham, Y., “Fab:content-based, collaborative recommendation” Communications of the ACM, 1997, Vol. 40, No.3, pp.66-72.
13.Breese, J.S., Heckerman, D., and Kadie, C., “Empirical Analysis of Predictive Algorithms for Collaborative Filtering” Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence, 1998, pp.43-52.
14.Boucher-Ryan, P.D., and Bridge, D., “Collaborative Recommending using Formal Concept Analysis” Knowledge-Based Systems, 2006, pp.309-315.
15.Chen, L.-S., Hsu, F.-H., Chen, M.-C., Hsu, Y.-C., “Developing recommender systems with the consideration of product profitability for sellers” Information Sciences: an International Journal, 2008, Volume 178, pp. 1032-1048.
16.Chen, Y., Zhao, Y., and Yao Y., “A Profit-based Business Model for Evaluating Rule Interestingness” Advances in Artificial Intelligence, 2007, Volume 4509, pp. 296-307
17.Chen, Y.L., Kuo, M.H., Wu, S.Y., Tang , K., “Discovering Recency, Frequency, and Monetary(RFM) Sequential Patterns from Customers’ Purchasing Data” Electronic Commerce Research and Applications, 2009.
18.Cheung, K.W., Tsui, K.C., and Liu, J., “Extended Latent Class Models for Collaborative Recommendation” IEEE Transactions on Systems, Man, and Cybernetics – Part A:Systems and Humans, 2004, Vol. 34, No.1, January.
19.Cho, Y.B., Cho, Y.H., and Kim, S.H., “Mining changes in customer buying behavior for collaborative recommendations” Expert System with Applications 28, 2005, pp. 359-369.
20.Chun-Jung Chu, Vincent S. Tseng, Tyne Liang, “An efficient algorithm for mining temporal high utility itemsets from data streams”, Journal of Systems and Software, Vol. 81, Issue 7, 2008, pp. 1105-1117.
21.Davies, D.L., and Bouldin, D.W., “A Cluster Separation Measure” IEEE Transaction on Pattern Analysis and Machine Intelligence, 1979, Vol. 1, No. 2, pp.224-227.
22.Goldberg, D., Nichols, D., Oki, B.M., and Terry, D., “Using Collaborative Filtering to Weave an Information Tapestry” CACM, 1992, Vol. 35, No.12, pp.61-70.
23.Haruechaiyasak, C., Tipnoe, C., Kongyoung, S., Damrongrat, C., and Angkawattanawit, N., “A Dynamic Framework for Maintaining Customer Profile in E-Commerce Recommender Systems” IEEE International Conference on e-Technology, e-Commerce and e-Service, 2005.
24.Hirooks, Y., Terano, T., and Otsuka, Y., “Recommending Books of Revealed and Latent Interests in E-Commerce” Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, Vol. 3, 1632-1637.
25.Huang, Chen-Lung and Huang, Wei-Liang “Handling sequential pattern decay: Developing a two-stage collaborative recommender system” Electronic Commerce Research and Applications, Vol. 8, Issue 3, 2009, pp. 117-129.
26.Hughes,A. M., Strategic Database Marketing, 1994, Chicago, Probus Publishing.
27.Kim, J.K., Cho, Y.H., Kim, W.J., Kim, J.R., and Suh, J.H., “A personalized recommendation procedure for Internet shopping support” Electronic Commerce Research and Applications, 1, 2002, pp.301-313.
28.Krulwich, B., and Burkey, C., “Learning user information interests through extraction of semantically significant phrases” Proceedings of the AAAI Spring symposium on Machine Learning in Information Access, 1996.
29.Lang, K., “Newsweeder: Learning to Filter Netnews” Proceedings of the Machine Learning conference, Tahoe City, Calif, 1995, pp. 331-339.
30.Li, L. H., Lee, F. M. and Liu, W. J.,“The Timely Product Recommendation Based on RFM Method,” Proceedings of International Conference on Business and Information, Singapore, 2006.
31.Linden, G., Smith, B., and York, J. “Amazon.com recommendations: item-to-item collaborative filtering” IEEE Internet Computing, 7(1), 2003, pp.76-80.
32.MacQueen, J. B. “Some Methods for classification and Analysis of Multivariate Observations” Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1967, 1:281-297.
33.Maulik, U. and Bandyopadhyay, S. “Genetic Algorithm-Based Clustering Technique” Pattern Recognition, 33, 2000, pp.1455-1465.
34.Min, S.H., and Han, I. “Detection of the customer time-variant pattern for improving recommender systems” Expert Systems with Applications, 28, 2005, pp.189-199.
35.Mock, and Vemuri, “Information Filtering Via Hill Climbing, Wordnet, and Index Patterns” Information Processing & Management, Vol. 33, No. 5, 1997, pp.633-644.
36.Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C. “Mining sequential patterns by pattern-growth: the PrefixSpan approach” IEEE Transactions on Knowledge and Data Engineering 16 (11), 2004, 1424-1440.
37.Pei, J., Han, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C., “PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth” in: Proceeding of the 2001 Int''l Conf on Data Engineering (ICDE'' 01), Heidelberg, Germany, 2001.
38.Perugini, S., Concalves, M.A., and Fox, E.A, “Recommender Systems Research: A Connection-Centric Survey” Journal of Intelligent Information Systems, Vol. 23, No.2, 2004, pp.107-143.
39.Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., and Riedl, J. “Getting to know you: learning new user preferences in recommender systems” Proceedings of the IUT 02, San Francisco, CA, 2002, pp.127-134.
40.Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. “GroupLens: an open architecture for collaborative filtering of Netnews” Proceedings of the CSC Wconference, Chapel Hill, NC, 1994, pp.175-186.
41.Roberts M. L., “Expanding the Role of the Direct Marketing Database,” Journal of Direct Marketing, 1992, 6, pp.51-60.
42.Rucher, J., and Polanco, M.J. “Personalized navigation for the Web” Communications of the ACM, March, 40(3), 1997, pp. 73-75.
43.Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. “Analysis of Recommendation Algorithms for E-Commerce” Proceedings of the ACM E-Commerce Conference, 2000, pp. 158-167.
44.Schafer, J.B., Konstan, J. and Riedl, J., “Recommender Systems in E-Commerce” ACM Conference on E-Commerce, 1999, p.158-p.166.
45.Shardanand, U., and Maes, P. “Social Information Filtering: Algorithms for Automating ‘Word of Mouth’” Proceedings of the Conference on Human Factors in Computing Systems (CHI95), 1995, pp. 210-217.
46.Ujjin, S., and Bentley, P.J., “Particle Swarm Optimization Recommender System” Swarm Intelligence Symposium, 2003. SIS ''03. Proceedings of the 2003 IEEE.
47.Wang, K., and Su, M.-Y., “Item Selection by "Hub-Authority" Profit Ranking” Conference on Knowledge Discovery in Data, 2002, pp. 652 – 657
48.Wang, K., Zhou, S., and Han, J., “Profit Mining: From Patterns to Actions” Lecture Notes in Computer Science, Vol. 2287, 2002, pp.70-87
49.Wang, K., Zhou, S., Yang, Q., Yeung, M.-S., “Mining Customer Value: From Association Rules to Direct Marketing” Data Mining and Knowledge Discovery, Volume 11. Number 1, 2005, pp. 57 – 79
50.Wang, Y. F., Chuang, Y. L, Hsu, M. H., and Keh, H. C. “A personalized recommender system for the cosmetic business” Expert Systems with Applications, 26, 2004, pp.427-434.
51.Xu Xiujuan, Jia Lifeng, Wang Zhe, Zhang Hongyan, Liang Shuang, Zhou Chunguang “Fast algorithm for mining item profit in retails based on microeconomic view” 2005 International Conference on Cyberworlds (CW''05), 2005, pp.349-353.
52.Yang, W., Wang, Z., and You, M., “An improved Collaborative Filtering Method for Recommendations’ Generation” 2004 IEEE International Conference on Systems, Man and Cybernetics, 2004.